

Contract No. 13/WSD/17

Design, Build and Operate First Stage of Tseung Kwan O **Desalination Plant**

Operation Phase Monthly EM&A Report No.9 (Period from 1 March to 31 March 2025)

Document No.

Aurecon	/	P525597	/	OPMEMAR09	/	2
Publisher		Project Code		Sequential No.		Revision Index

	Certified by:
Name	Toby WAN
Position	Environmental Team Leader
Signature	
Date:	14 April 2025

Our ref.: LES/J2024-01/CS/L078

Date : 14 April 2025

By Post and Email

Water Supplies Department New Works Branch Consultants Management Division 6/F, Sha Tin Government Offices, 1 Sheung Wo Che Road, Sha Tin, New Territories

Attn: Mr. W F Cheung/ S K Wong

Dear Sirs,

Independent Environmental Checker (IEC) for Construction and Operation of the First Stage Desalination Plant at Tseung Kwan O (Quotation Ref. No. TKO1/IEC/003)

<u>Verification of Operation Phase Monthly Environmental Monitoring and Audit (EM&A)</u> Report for March 2025

Referring to the Operation Phase Monthly Environmental Monitoring and Audit Report (March 2025) Rev.2.0 as submitted by the Environmental Team on 14 April 2025, we hereby verify the captioned report for further submission to the Director's Representative of the Project according to Clause 3.5 of the Environmental Permit EP-503/2015/B and Further Environmental Permit FEP-01/503/2015/B.

Should you have any queries, please contact the undersigned at 61496683, or email at serenashek@lamenviro.com.

Yours sincerely, For and On Behalf Of Lam Environmental Services Limited

Serena Shek

Independent Environmental Checker

Binnies (Attn.: Derek Lai) By E-mail
Aurecon (Attn.: Toby Wan) By E-mail

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Operation Phase Monthly EM&A Report No.9

REVISION HISTORY

REV.	DESCRIPTION OF MODIFICATION	DATE
1.	1 st Issue	9/4/2025
2.	2 nd Issue	14/4/2025

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Operation Phase Monthly EM&A Report No.9

CONTENTS

Execu	tive Summary		1
1.	Basic Contract Infor	mation	3
2.	Water Quality		8
3.	Waste		23
4.	Landfill Gas Monitor	ring	24
5.	Landscape		28
6.	Ecology (Coral Moni	toring)	29
7.	Ecology (Fishery Mo	onitoring)	31
8.	Summary of Exceeda	ance, Complaints, Notification of Summons and Prosecutions	34
9.	EM&A Site Inspectio	n	36
10.	Future Key Issues		37
11.	Conclusions and Rec	commendations	38
A	opendix A	Overview of Desalination Plant in Tseung Kwan O	
A_{l}	opendix B	Summary of Implementation Status of Environmental Mitigation	1
A_{l}	opendix C	Impact Monitoring Schedule	
A	opendix D	Event/Action Plan	
A	opendix E	Water Quality Monitoring Equipment and Landfill Gas Equi Calibration Certificate	pment
A_{l}	opendix F	Water Quality Monitoring Data and Landfill Gas Monitoring Dat	a
A_{l}	opendix G	Waste Flow Table	
A_{l}	opendix H	Ecology (Coral) Survey Report	
A_{l}	opendix I	Site Inspection Proforma	
A_{l}	opendix J	Complaint Log	
A	opendix K	Exceedance Report	

EXECUTIVE SUMMARY

INTRODUCTION

- A1. The Project, Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (TKODP), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (EP No. FEP 01/503/2015/B) for the operation phase of the Contract.
- A2. In accordance with the Environmental Monitoring and Audit (EM&A) Manual for the Contract, EM&A works for marine water quality, waste management and ecology should be carried out by Environmental Team (ET), Aurecon Hong Kong Limited (Aurecon), during the Tseung Kwan O Desalination Plant.
- A3. The TKODP commenced the operation stage on 1 July 2024. This is the 9th Operation Phase Monthly EM&A Report, prepared by Aurecon, for the Contract summarizing the monitoring results and audit findings of the EM&A programme at and around Tseung Kwan O Area 137 (TKO 137) during first-year operation of Tseung Kwan O Desalination Plant in March 2025.
- A4. The EM&A programme for this contract has covered environmental monitoring on water quality and Contractor's environmental performance auditing in the aspects of dust, landfill gas, water quality, waste management, Landscape and Visual and Ecology.

SUMMARY OF EXCEEDANCE & INVESTIGATION & FOLLOW-UP

WATER QUALITY MONITORING

- A5. The EM&A works for operation phase marine water quality were conducted during the reporting period in accordance with the EM&A Manual. Nine (9) of SS obtained had exceeded the Action Level. Thirteen (13) of SS obtained during the reporting period had exceeded the Limit Level.
- A6. The EM&A works for continuous monitoring of effluent quality were conducted during the reporting period in accordance with the EM&A Manual. No exceedance of the sampling was obtained during the reporting period.
- A7. Due to the suspension of production at the plant, there was no effluent discharge from the TKODP during the periods listed below:
 - From 6 a.m. on 2 March 2025 to 10 a.m. on 2 March 2025
 - From 12 p.m. on 3 March 2025 to 4 p.m. on 3 March 2025
 - From 12 a.m. on 10 March 2025 to 10 a.m. on 19 March 2025
 - From 10 p.m. on 27 March 2025 to 12 a.m. on 28 March 2025

Therefore, the effluent sampling was suspended from 10 to 18 March 2025.

ECOLOGY IMPACT MONITORING

- A8. Monthly operation phase coral monitoring works was conducted on 19 March 2025. There is no AL/LL exceedance during the monitoring period.
- A9. Operation phase fishery monitoring for dry season 2025 was carried out on 15 and 29 March 2025. The detail of the monitoring will be presented when the result is available.

LANDFILL GAS MONITORING

A10. In this reporting period, monthly landfill gas monitoring was conducted on 13 and 14 March 2025. No exceedances of action level and limit level was observed.

WEEKLY SITE INSPECTIONS

A11. In this reporting period, site inspections were carried out by ET on 5, 11, 18, 25 and 31 March 2025. Joint site inspections of the operation work by ET and IEC were carried out on 25 March 2025 to audit the mitigation measures implementation status.

COMPLAINT HANDLING AND PROSECUTION

A12. No environmental complaint, notification of summons and prosecution was received in the reporting period.

REPORTING CHANGE

- A13. There was no change to be reported that may affect the on-going EM&A programme.
- A14. According to the contractor's information, the works of TKODP were substantially completed on 30 June 2024 and the plant commenced the operation phase on 1 July 2024. The outstanding construction works were being carried out during this reporting period. Details of the construction phase monitoring will be presented in the Construction Phase Monthly EM&A Report.
- A15. A Justification of Termination of the EM&A Programme for the Construction Phase was submitted to EPD on 2 December 2024. The EPD provided comments on the justification proposal on 23 December 2024.

1. Basic Contract Information

BACKGROUND

- 1.1. The Acciona Agua, S.A. Trading, Jardine Engineering Corporation, Limited and China State Construction Engineering (Hong Kong) Limited as AJC Joint Venture (AJCJV) is contracted to carry out the Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (TKODP) under Contract No. 13/WSD/17 (the Contract).
- 1.2. Aurecon Hong Kong Limited (Aurecon) is commissioned by AJCJV to undertake the Environmental Team (ET) services as required and/or implied, both explicitly and implicitly, in the Environmental Permit (EP), Environmental Impact Assessment Report (EIA Report) (Register No. AEIAR-192/2015) and Environmental Monitoring and Audit Manual (EM&A Manual) for the Contract; and to carry out the Environmental Monitoring and Audit (EM&A) programme in fulfillment of the EIA Report's EM&A requirements and Contract No. 13/WSD/17 Specification requirements.
- 1.3. Pursuant to the Environmental Impact Assessment Ordinance (EIAO), the Director of Environmental Protection granted the Environmental Permit (No. EP-01/503/2015/B) to Water Supplies Department (WSD); and granted the Further Environmental Permit (No. FEP-01/503/2015/B) to AJCJV for the Contract.

THE REPORTING SCOPE

1.4. This is the 9th Operation Phase Monthly EM&A Report for the Contract which summarizes the key findings of the EM&A programme of the Tseung Kwan O Desalination Plant Operation phase during the reporting period from 1 March to 31 March 2025.

CONTRACT ORGANIZATION

1.5. The Contract Organization structure for Operation Phase is presented in **Figure 1.1**.

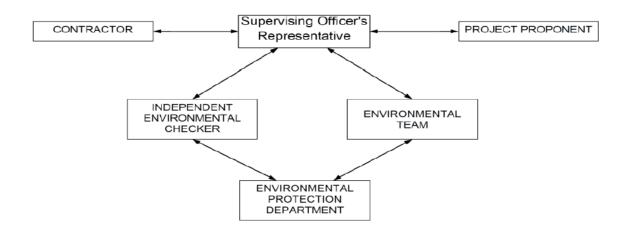


Figure 1.1 Contract Organization Chart

1.6. Contact details of the key personnel are presented in **Table 1.1** below:

Table 1.1 Contact Details of Key Personnel

Party	Position	Name	Telephone no.
Contract Proponent (Water Supplies Department)	SE/CM2	Milton Law	2634-3573
Supervising Officer	Project Manager	Augustine Li	2608-7671
(Binnies Hong Kong Limited)	Senior Resident Engineer	Mason Pau	6765-4131
	Project Manager (Acting)	Arnes Parra, Victor	6468-6710
The Jardine Engineering Corporation, Limited, China State Construction Engineering (Hong Kong) Limited and	Environmental Monitoring Manager	Brian Kam	9456-9541
Acciona Agua, S.A. Trading	Environmental Monitoring Manager	Tommy Law	6468-1782
Aurecon Hong Kong Limited	Environmental Team Leader	Toby Wan	9719-5422
Lam Environmental Services Limited	Independent Environmental Checker (IEC)	Serena Shek	6149-6683

SUMMARY OF OPERATION WORKS

- 1.7. Details of the major operation activities undertaken in this reporting period are shown below.
- 1.8. As informed by the Contractor, key activities carried out in this reporting period for the Contract included the followings:
 - Potable Water Production
- 1.9. The key environmental mitigation measures implemented for the Contract in this reporting period associated with the above operation works include:
 - Regularly monitoring of the effluent
 - Sorting and storage of general refuse and operation waste
- 1.10. Summary of the valid permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Table 1.2 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

Downsit / Linear co.	Valid Period		Chatasa	Remark			
Permit/ Licences	From To		Status				
Environmental Perm	Environmental Permit						
EP-503/2015/B	Throughout th	ne Contract	Valid	-Issued on 3 April 2024			
FEP – 01/503/2015/B	Throughout tl	ne Contract	Valid	-Issued on 3 April 2024			
Billing Account for Di	isposal						
7036276	Throughout th	ne Contract	Valid	-			
Sludge (Special Waste	e) Disposal (Ad	lmission Ticke	et)				
101428	01/01/2025	30/06/2025	Valid				
Chemical Waste Prod	ucer Registrat	tion					
5213-839-A2987-01	Throughout th	ne Contract	Valid	-			
Wastewater Discharg	ge Licence (Lan	d and Marine	works)				
WT00044188-2023	16/06/2023	30/06/2028	Valid	- For Plant T&C and operation Variation sampling point S.P.1 is approved by the EPD on 25 June 2024 (EPD ref.: EP640/W3/D1358/46 2874). EPD advise that we can use the current discharge license for the anti-scalant dosing and discharge limit. They agreed that the report can show the 5PPM is the lowest detection limit. The variation of application was withdrawn on 13 Dec 2024.			

1.11. The status for all environmental aspects is presented in **Table 1.3**.

Table 1.3 Summary of Status for Key Environmental Aspects under the EM&A Manual

Parameters	Status			
Water Quality				
Baseline Monitoring under EM&A Manual	The baseline water quality monitoring was conducted between 12 May 2020 to 6 Jun 2020.			
Operation phase Marine Impact Monitoring	On-going			
Continuous Monitoring of Effluent Quality	On-going			
Waste Management				
Mitigation Measures in Waste Management Plan	On-going			
Landfill Gas				
Monthly Monitoring for buildings, manholes and utility pits within the Project Site and along the fresh water mains	On-going			
Ecology (Coral)				
Operation phase Regular Coral Monitoring (Monthly)	On-going			
Ecology (Fishery)				
Operation phase Regular Fishery Monitoring (Seasonally)	On-going			
Landscape				
Operation phase Landscape and Visual Site Inspection	On-going			
Environmental Audit				
Site Inspection covering Measures of Air Quality, Water Quality, Waste, Ecological Quality, Fisheries, Landscape and Visual	On-going			

1.12. Other than the EM&A work by ET, environmental briefings, trainings, and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Operation Phase Monthly EM&A Report No.9

1.13. The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the EM&A Manual. A summary of implementation status of the environmental mitigation measures for the operation phase of the Contract during the reporting period is provided in **Appendix B**.

2. WATER QUALITY

- 2.1. In accordance with the recommendations of the EIA, water quality monitoring is required during operation phase. The following Section provides details of the water quality monitoring to be undertaken by the Environmental Team (ET) to verify the distance of sediment and brine plume dispersion and to identify whether the potential exists for any indirect impacts to occur to ecological sensitive receivers.
- 2.2. The water quality monitoring programme was carried out to allow any deteriorating water quality to be readily detected and timely action taken to rectify the situation.
- 2.3. Water quality monitoring for the Contract can be divided into the following stages:
 - (a) Operation phase Marine Water Quality Monitoring first year upon commissioning
 - (b)Continuous Monitoring of Effluent Quality

WATER QUALITY PARAMETERS

- 2.4. Parameters to be measured in the marine water quality monitoring and the Continuous Monitoring of Effluent Quality are listed in **Table 2.1** and **Table 2.2** respectively.
 - a) Operation phase Marine Water Quality Monitoring
- 2.5. The parameters for the marine water quality monitoring that have been selected for measurement in situ and in the laboratory are those that were either determined in the EIA to be those with the most potential to be affected by the operation works or are a standard check on water quality conditions.

Table 2.1 Parameters measured in the Marine Water Quality Monitoring

Parameters	Unit	Abbreviation
In-situ measurements		
Dissolved oxygen	mg/L	DO
Temperature	οС	-
рН	-	-
Turbidity	NTU	-
Salinity	0/00	-
Total Residual Chlorine	mg/L	TRC
Laboratory measurements		
Suspended Solids	mg/L	SS
Iron-Soluble	mg/L	Fe
Anti-scalant as Reactive Phosphorus*	mg/L	PO4 as P-

^{*}Remark: Anti-scalant water quality testing will only be conducted whenever anti-scalant dosage is adopted.

- b) Continuous Monitoring of Effluent Quality
- 2.6. The monitoring requirement for the continuous effluent quality monitoring shall be conducted in accordance with the effluent parameters and standards stipulated by the Water Pollution Control Ordinance Discharge License (No.: WT00044188-2023) conditions.

Table 2.2 Parameters measured in the Continuous Monitoring of Effluent Quality

Parameters	Unit	Abbreviation			
In-situ measurements					
Temperature	οС	-			
рН	рН	-			
Salinity	0/00	-			
Total Residual Chlorine	mg/L	TRC			
Laboratory measurements	Laboratory measurements				
Suspended Solids	mg/L	SS			
Iron-Soluble	mg/L	Fe			
Total Inorganic Nitrogen	mg/L	-			
Total Phosphorus	mg/L	-			
Sodium Metabisulphite	mg/L	SMBS			
Anti-scalant as Reactive Phosphorus *	mg/L	PO4 as P-			

^{*}Remark: Anti-scalant water quality testing will only be conducted whenever anti-scalant dosage is adopted.

2.7. In addition to the marine water quality parameters, other relevant data were also being measured and recorded in Water Quality Monitoring Logs, including the location of the sampling stations, water depth, time, weather conditions, sea conditions, tidal stage, current direction and velocity, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results.

MONITORING EQUIPMENT

- a) Operation phase Marine Water Quality Monitoring
- 2.8. For water quality monitoring, the following equipment were used:

Dissolved Oxygen and Temperature Measuring Equipment - The instrument was a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and was operable from a DC power source. It was capable of measuring: dissolved oxygen levels in the range of 0 - 20 mg/L and 0 - 200% saturation; and a temperature of 0 - 45 degrees Celsius. It has a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cables were available for replacement where necessary (e.g. YSI model 59 DO meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).

Turbidity Measurement Equipment - The instrument was a portable, weatherproof turbidity-measuring unit complete with cable, sensor and comprehensive operation manuals. The equipment was operated from a DC power source, it has a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU and complete with a cable with at least 35 m in length (for example Hach 2100P or an approved similar instrument).

Salinity Measurement Instrument - A portable salinometer capable of measuring salinity in the range of 0 - 40 ppt was provided for measuring salinity of the water at each monitoring location.

Water Depth Gauge – A portable, battery-operated echo sounder (for example Seafarer 700 or a similar approved instrument) was used for the determination of water depth at each designated monitoring station. This unit will preferably be affixed to the bottom of the work boat if the same vessel is to be used throughout the monitoring programme. The echo sounder was suitably calibrated.

Positioning Device – A Global Positioning System (GPS) was used during monitoring to allow accurate recording of the position of the monitoring vessel before taking measurements. The Differential GPS, or equivalent instrument, was suitably calibrated at appropriate checkpoint (e.g. Quarry Bay Survey Nail) to verify that the monitoring station is at the correct position before the water quality monitoring commence.

Water Sampling Equipment - A water sampler, consisting of a PVC or glass cylinder of not less than two litres, which can be effectively sealed with cups at both ends, was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

Total Residual Chlorine -Total residual chlorine (TRC) shall be measured in-situ using approved test kit.

- b) Continuous Monitoring of Effluent Quality
- 2.9. The equipment to be used for the effluent quality monitoring was summarizes in **Table 2.3**.

Table 2.3 Parameters measured in the Continuous Monitoring of Effluent Quality

Equipment	Model
Refrigerated Sampler	Teledyne ISCO 5800
Online sampler for real-time monitoring (Xylem WTW IQ SensorNet system and sensors)	DIQ/S 284-PR: Universal Transmitter to operate up to 4 digital IQ sensors, with PROFIBUS-connection

Equipment	Model
	TetraCon® 700 IQ SW: Digital 4 electrode conductivity cell, in seawater design, suited for heavily polluted water, for use with the IQ SENSOR NET. With integrated temperature sensor
	VisoTurb® 700 IQ SW: Digital turbidity sensor for industrial and seawater applications (ultrasonic cleaning) for use with the IQ SENSOR NET system
	SensoLyt® 700 IQ SW: Robust digital pH/ORP sensor for SensoLyt® SEA/DWA/ECA/PtA pH/ORP electrodes, in sea water design, for use with the IQ SENSOR NET. With built-in pre-amplifier and temperature sensor (NTC), with SensCheck function
	FDO®700 IQ SW: Digital calibration free optical D.O. sensor (universal use). Optimized for measuring and controlling the O2 input in seawater applications, for use with IQ SENSOR NET. Factory calibrated system composed of sensor FDO® 700 IQ SW, membrane cap SCFDO® 700 and protective cap MSK FDO®
	Chlorine 3017M: Online analyzer for photometric measurement of free and total chlorine, according to colorimetric DPD Method (ISO &US EPA); outputs (selectable): 4 to 20 mA or RS 485

Based on Section 5.1.3 of the EM&A Manual, the online sampler for real-time monitoring will be tested before use by HOKLAS-accredited laboratory and will be re-calibrated at monthly intervals throughout the stages of effluent quality monitoring.

SAMPLING / TESTING PROTOCOLS

2.10. All in situ monitoring instruments were checked, calibrated, and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at monthly intervals throughout the stages of the water

quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use.

2.11. On-site calibration of field equipment was following the "Guide to On-Site Test Methods for the Analysis of Waters", BS 1427: 2009. Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was made available so that monitoring can proceed uninterrupted even when equipment is under maintenance, calibration etc.

LABORATORY MEASUREMENT AND ANALYSIS

- a) Operation phase Marine Water Quality Monitoring
- 2.12. Sufficient volume of each water sample was collected for carrying out the laboratory analyses. Using chain of custody forms, collected water samples were transferred to a HOKLAS accredited laboratory (Acumen Laboratory and Testing Limit HOKLAS 241) for immediate processing. The determination work was start within the next working day after collection of the water samples. Analytical methodology and sample preservation of other parameters were based on the latest edition of Standard Methods for the Examination of Waste and Wastewater published by APHA, AWWA and WPCF and methods by USEPA, or suitable method in accordance with requirements of HOKLAS or another internationally accredited scheme. The QA/QC details were in accordance with the requirements of HOKLAS or another internationally accredited scheme.
- 2.13. Parameters for laboratory measurements, standard methods and detection limits are presented in **Table 2.4**.

Table 2.4 Laboratory measurements, standard methods, and corresponding detection limits of marine water quality monitoring

Parameters	Standard Methods	Detection Limit	Reporting Limit	Precision
Dissolved oxygen	Instrumental, CTD	0.1	-	±25%
Temperature	Instrumental, CTD	0.1	-	±25%
рН	Instrumental, CTD	0.1	-	±25%
Turbidity	Instrumental, CTD	0.1	-	±25%
Salinity	Instrumental, CTD	0.1	-	±25%
Suspended Solids	APHA 23 rd Ed 2540D	1.0	2.5	±17%
Iron	APHA 3111 B	0.2	-	±25%
Total residual chlorine	APHA 4500CL: G	0.01mg/L	-	±25%
Anti-scalant*	Content acrylic polymers determination method	5 mg/L	-	-

*Remark: A proposal for update anti-scalant monitoring under the operation phase EM&A programme is proposed via email on 27 May 2024. EPD has agreed to update the anti-scalant monitoring detection limit, action and limit level from 0.2 mg/L to 5.0 mg/L (EPD ref. ()In EP 2/N8/E/120 Pt.14).

- b) Continuous Monitoring of Effluent Quality
- 2.14. Analyses of the sample shall be carried out using American Public Health Association Standard Method for the Examination of Water and Wastewater or other internationally accepted standard methods proposed by the Licensee and approved by the Authority which could achieve the monitoring requirement.

Table 2.5 Measurements Methods for Continuous Monitoring of Effluent Quality

Table 2.5 Measurements Methods for Continuous Monitoring of Emuent Qual					
Parameters	Standard Methods				
Flow Rate (m3 / day)	In-house method				
Temperature(°C)	Instrumental				
Salinity (0/00)	Instrumental				
pH (pH units)	Instrumental				
Suspended Solids (mg / L)	АРНА 2540Е				
Iron (mg / L)	APHA 3111 B				
Total Inorganic Nitrogen (mg / L)	In-house method				
Total Phosphorous (mg / L)	In-house method				
Total Residual Chlorine	APHA 4500CL: G				
Sodium Metabisulphite					
Anti-scalant 'ACUMER' 4035*					

^{*}Remark: Anti-scalant water quality testing will only be conducted whenever anti-scalant dosage is adopted.

MONITORING LOCATION

- a) Operation phase Marine Water Quality Monitoring
- 2.15. The operation phase water quality monitoring locations are in accordance with the EM&A Manual and detailed in **Table 2.6** below. A schedule for water quality monitoring was prepared by the ET and submitted to IEC and EPD prior to the commencement of the monitoring.

Table 2.6 Location of Water Quality Monitoring Stations

Station	Easting	Northing	Description
CE	843550	815243	Upstream control station at ebb tide
CF	846843	810193	Upstream control station at flood tide
WSR1	846864	812014	Ecological sensitive receiver at Tung Lung Chau
WSR2	847645	812993	Fisheries sensitive receiver at Tung Lung Chau
WSR3	848023	813262	Ecological sensitive receiver at Tung Lung Chau
WSR4	847886	814154	Ecological sensitive receiver at Tai Miu Wan
WSR16	845039	815287	Ecological sensitive receiver at Fat Tong Chau
WSR33	847159	814488	Ecological sensitive receiver at Tai Miu Wan
WSR36	846878	814081	Ecological sensitive receiver at Kwun Tsai
WSR37	846655	813810	Ecological sensitive receiver at Tit Cham Chau
NF1	846542	813614	Edge of Mixing zone, ~ 200m west of outfall diffuser
NF2	846942	813614	Edge of Mixing zone, \sim 200m east of outfall diffuser
NF3	846742	813414	Edge of Mixing zone, ~ 200m south of outfall diffuser

2.16. WSR1 to WSR37 were identified in accordance with Annex 14 of the EIAO-TM as well as Clause 3.4.4.2 of the Environmental Impact Assessment Study Brief for Desalination Plant at Tseung Kwan O (No. ESB-266/2013). WSR1 to WSR3 are sited near the Tung Lung Chau Fish Culture Zone; WSR16 and WSR36 are sited near the coral assemblages along the coastlines of Fat Tong Chau and Kwun Tsai respectively; WSR 4 and WSR33 are sited near the Coastal Protection Area and coral assemblages in waters of Tai Miu Wan; WSR37 is sited near the fisheries resource including spawning and nursery grounds at the coastal water of Tit Cham Chau. NF1 to NF3 are the Edge of Mixing zone.

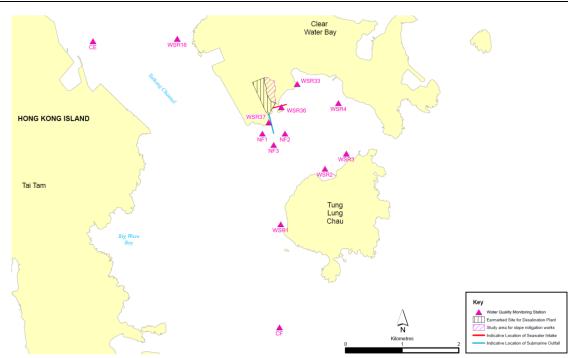


Figure 2.1 Water Quality Monitoring Locations under EM&A Manual

- b) Continuous Monitoring of Effluent Quality
- 2.17. In accordance with the discharge license, the Continuous Monitoring shall be sampling at Brine Outfall Shaft.

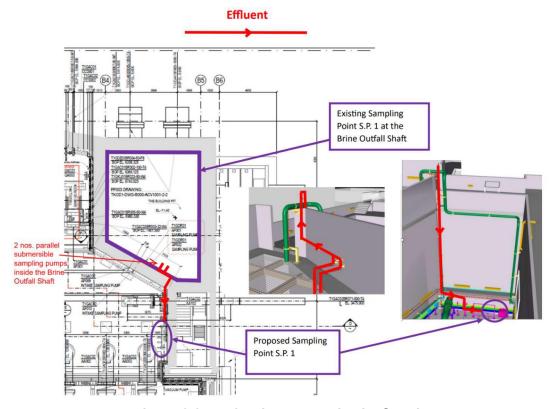


Figure 2.2 Continuous Monitoring locations

SAMPLING FREQUENCY

- a) Impact Marine Water Quality Monitoring
- 2.18. Water quality monitoring was carried out three days per week during the operation phase. Monitoring at each station was undertaken once per day. The interval between two sets of monitoring was not less than 36 hours. The monitoring frequency would be increased in the case of exceedances of Action/Limit Levels if considered necessary by ET. Monitoring frequency would be maintained as far as practicable.
 - b) Continuous Monitoring of Effluent Quality
- 2.19. The effluent should be collected in a full 24-hour period. Twenty four-hour flow-weighted composite effluent sample for subsequent chemical analysis and testing should be prepared by the following procedures:
 - Collect effluent sub-sample at bi-hourly interval over a 24 hour period
 - Obtain flow record of the Project for the 24-hour sampling period
 - Calculate the volume of each sub-sample for preparation of flow-weighted composite sample
 - Transfer the appropriate volume of sub-samples to a clean container and mix thoroughly

SAMPLING DEPTHS & REPLICATION

- a) Operation phase Marine Water Quality Monitoring
- 2.20. During water quality monitoring, each station was sampled, and measurements/ water samples were taken at three depths, 1 m below the sea surface, mid-depth, and 1 m above the seabed. For in situ measurements, duplicate readings were made at each water depth at each station. Duplicate water samples were collected at each water depth at each station.
 - b) Continuous Monitoring of Effluent Quality
- 2.21. The effluent sampling should be planned carefully to ensure appropriate volume of effluent sub-samples is collected to prepare sufficient amount of flow-weighted composite effluent sample for carrying out subsequent chemical analysis and testing.

ACTION AND LIMIT LEVELS

2.22. The Action and Limit Levels have been set based on the derivation criteria specified in the EM&A Manual. The Action/Limit Levels have been derived and are presented in **Table 2.7** and **Table 2.8**.

a) Operation phase Marine Water Quality Monitoring

Table 2.7 Derived Action and Limit Levels for Water Quality

Fable 2.7 Parameters	Derived Action and Limit Levels to Action	Limit		
Operation pl	nase Marine Water Quality Monit			
DO in mg/L	Surface and Middle	Surface and Middle		
	7.30 mg L ⁻¹	4 mg L ⁻¹		
	Bottom	<u>Bottom</u>		
	7.31 mg L ⁻¹	2 mg L ⁻¹		
	Tung Lung Chau Fish Culture Zone	Tung Lung Chau Fish Culture Zone		
	5.1 mgL ⁻¹ or level at control station	5.0 mgL ⁻¹ or level at control station		
	(Whichever the lower)	(Whichever the lower)		
SS in mg/L	5.00 mg L-1 or 20% exceedance of	6.00 mg L-1 or 30% exceedance of value		
(Depth-	value at any impact station	at any impact station compared with		
averaged)	compared with corresponding data	corresponding data from control		
	from control station	station		
Turbidity in	2.41 NTU or 20% exceedance of	2.84 NTU or 30% exceedance of value		
NTU (Depth-	value at any impact station	at any impact station compared with		
averaged)	compared with corresponding data	corresponding data from control		
	from control station	station		
Salinity in	34.25 PSU or 9% exceedance of	34.56 PSU or 10% exceedance of value		
PSU (Depth-	value at any impact station	at any impact station compared with		
averaged)	compared with corresponding data	corresponding data from control		
	from control station	station		
Iron in mg/L	0.3 mg/L	0.3 mg/L		
(Depth-	,			
averaged)				
S y				
Total residual	0.01 mg/L	0.01 mg/L		
chlorine in				
mg/L				
*Anti-scalant	5.0 mg/L	5.0 mg/L		
in mg/L				
(Depth-				
averaged)				

Notes:

- i."Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- ii.For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- iii.For Turbidity, SS, iron and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- iv.*A proposal for update anti-scalant monitoring under the operation phase EM&A programme is proposed via email on 27 May 2024. EPD has agreed to update the anti-scalant monitoring detection limit, action and limit level from 0.2 mg/L to 5.0 mg/L (EPD ref. ()In EP 2/N8/E/120 Pt.14).
- b) Continuous Monitoring of Effluent Quality

Table 2.8 Derived Limit Levels for Water Quality

Parameters	Limit					
Continuous Monitoring of Effluent Qu	Continuous Monitoring of Effluent Quality					
Flow Rate in m³/day	216841					
Temperature in °C	Maximum 40					
Salinity	71347					
SS in mg/L	13					
рН	6-9					
Iron in mg/L	0.6					
Total residual chlorine in mg/L	0.1					
Total Inorganic Nitrogen in mg/L	2					
Total Phosphorous in mg/L	1					
Sodium Metabisulphite in mg/L	0.5					
Anti scalant in mg/L*	2.2					

^{*}Remark:

MONITORING RESULTS AND OBSERVATIONS

- a) Operation phase Marine Water Quality Monitoring
- 2.23. The operation phase of Tseung Kwan O Desalination Plant was commenced on 1 July 2024. Marine water quality monitoring for the operation phase of Tseung Kwan O Desalination Plant was conducted in the reporting period at the thirteen monitoring stations (CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37, NF1, NF2 and NF3). The Action and Limit Level would be referred to the approved EM&A Manual Table 2.7.
- 2.24. The marine water quality monitoring was conducted at the thirteen monitoring stations on 1, 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27 and 29 March 2025.
- 2.25. Nine (9) of the operation phase water quality monitoring results of SS obtained had exceeded the Action Level. Thirteen (13) of SS obtained during the reporting period had exceeded the Limit Level.

^{1.} Anti-scalant water quality testing will only be conducted whenever anti-scalant dosage is adopted.

- 2.26. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 4, 6, 13, 15, 22 and 27 March 2025 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix K**.
- 2.27. Monitoring results of 8 key parameters: Salinity, DO, turbidity, SS, pH, temperature, Total Residual Chlorine and Iron in this reporting, are summarized in **Table 2.9**, and detailed results are presented in **Appendix F**.
 - b) Continuous Monitoring of Effluent Quality
- 2.28. Continuous Monitoring of Effluent Quality was conducted sampling point in the reporting month. No exceedance of the sampling was obtained during the reporting period. The detailed results are summarized in **Table 2.10**, and presented in **Appendix F.**
- 2.29. Due to the suspension of production at the plant, there was no effluent discharge from TKODP during the periods listed below:
 - From 6 a.m. on 2 March 2025 to 10 a.m. on 2 March 2025
 - From 12 p.m. on 3 March 2025 to 4 p.m. on 3 March 2025
 - From 12 a.m. on 10 March 2025 to 10 a.m. on 19 March 2025
 - From 10 p.m. on 27 March 2025 to 12 a.m. on 28 March 2025

Therefore, the effluent sampling was suspended from 10 to 18 March 2025.

 Table 2.9
 Summary of Impact Water Quality Monitoring Results

		Parameters								
Locations		Salinity	Dissolved Oxygen (mg/L)			Turbidity	Suspended Solids	Temp.	TRC	Iron
		(ppt)	Surface & Middle	Bottom	pН	(NTU)	(mg/L)	(°C)	(mg/L)	(mg/L)
	Avg.	31.89	8.89	8.89	8.15	2.33	2.81	21.06	< 0.01	<0.1
CE	Min.	30.90	8.29	8.30	8.00	1.98	2.50	20.15	< 0.01	<0.1
	Max.	32.86	9.38	9.42	8.35	2.68	5.00	21.56	< 0.01	<0.1
	Avg.	31.94	8.82	8.86	8.18	2.34	2.91	21.03	< 0.01	<0.1
CF	Min.	30.82	7.93	7.97	8.01	1.81	2.50	20.13	< 0.01	<0.1
	Max.	32.98	9.60	9.64	8.34	2.72	6.00	21.76	< 0.01	<0.1
	Avg.	31.90	8.73	8.76	8.18	1.90	3.02	21.01	< 0.01	<0.1
WSR1	Min.	30.60	7.90	8.03	7.98	1.54	2.50	20.13	< 0.01	<0.1
	Max.	32.56	9.36	9.58	8.31	2.11	6.00	21.64	< 0.01	<0.1
	Avg.	31.78	8.76	8.78	8.14	1.75	2.93	21.04	< 0.01	<0.1
WSR2	Min.	30.89	8.35	8.33	7.93	1.47	2.50	20.04	< 0.01	<0.1
	Max.	32.63	9.43	9.53	8.31	2.16	9.00	21.60	< 0.01	<0.1
	Avg.	31.85	8.93	8.96	8.15	1.79	3.04	21.07	< 0.01	<0.1
WSR3	Min.	31.07	8.42	8.42	8.06	1.44	2.50	20.21	< 0.01	<0.1
	Max.	32.83	9.71	9.57	8.32	2.18	7.00	21.67	< 0.01	<0.1
	Avg.	31.69	8.83	8.82	8.16	1.83	3.04	21.06	< 0.01	<0.1
WSR4	Min.	30.88	8.17	8.09	7.97	1.57	2.50	20.20	< 0.01	<0.1
	Max.	32.53	9.46	9.47	8.31	2.16	5.00	21.59	< 0.01	<0.1
WCD16	Avg.	32.08	8.86	8.88	8.21	1.77	3.03	21.08	< 0.01	<0.1
WSR16	Min.	30.99	8.00	8.06	8.04	1.45	2.50	20.21	< 0.01	<0.1

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Operation Phase Monthly EM&A Report No.9

		Parameters								
Locations		Salinity	Dissolved Oxygen (mg/L)			Turbidity	Suspended Solids	Temp.	TRC	Iron
		(ppt)	Surface & Middle	Bottom	pН	(NTU)	(mg/L)	(°C)	(mg/L)	(mg/L)
	Max.	32.68	9.50	9.65	8.35	2.08	9.00	21.73	<0.01	<0.1
	Avg.	31.93	8.71	8.71	8.19	1.74	2.94	21.08	< 0.01	<0.1
WSR33	Min.	31.01	8.05	8.10	8.00	1.52	2.50	20.24	< 0.01	<0.1
	Max.	32.90	9.69	9.66	8.30	2.01	5.00	21.57	< 0.01	<0.1
	Avg.	32.03	8.82	8.80	8.15	1.79	3.03	21.03	< 0.01	<0.1
WSR36	Min.	31.17	8.29	8.30	7.94	1.45	2.50	20.17	< 0.01	<0.1
	Max.	32.75	9.33	9.37	8.28	2.07	6.00	21.53	< 0.01	<0.1
	Avg.	32.03	8.63	8.64	8.18	1.77	3.17	21.04	< 0.01	<0.1
WSR37	Min.	30.95	8.09	8.12	7.93	1.23	2.50	20.10	< 0.01	<0.1
	Max.	32.93	9.16	9.17	8.35	2.15	9.00	21.80	< 0.01	<0.1
	Avg.	31.59	8.85	8.87	8.16	1.70	3.49	21.01	< 0.01	<0.1
NF1	Min.	30.80	8.07	8.21	8.04	1.26	2.50	20.19	< 0.01	<0.1
	Max.	32.79	9.45	9.45	8.30	2.10	15.00	21.65	< 0.01	<0.1
	Avg.	31.87	8.89	8.90	8.16	1.83	3.62	21.00	< 0.01	<0.1
NF2	Min.	30.99	8.28	8.43	7.98	1.46	2.00	20.19	< 0.01	<0.1
	Max.	33.02	9.44	9.43	8.31	2.16	18.00	21.61	< 0.01	<0.1
	Avg.	32.05	8.84	8.81	8.16	1.73	3.80	32.05	< 0.01	<0.1
NF3	Min.	31.27	8.02	8.03	7.98	1.30	2.50	31.27	< 0.01	<0.1
	Max.	33.07	9.62	9.50	8.30	2.11	19.00	33.07	< 0.01	<0.1

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Measurement data of Suspending Solids would be rounding to 2.5mg/L if the value was less than 2.5mg/L to facilitate data analysing.

 Table 2.10
 Summary of Continuous Effluent Monitoring Results (Pending)

	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)	Suspended Solids (mg/L)	Total Inorganic Nitrogen (mg/L)	Total Phosphorus (mg/L)	*Sodium Metabisulphite (mg/L)	Iron (mg/L)
Avg.	50.44	8.00	18.94	0.02	2	0.290	0.02	2	0.1
Min.	48.55	7.80	17.99	0.01	2	0.010	0.01	2	0.1
Max.	52.84	8.20	19.95	0.06	2	0.155	0.01	2	0.1

^{*} Remark: As confirmed by various laboratories in Hong Kong, the lowest detection limit for Sodium Metabisulphite is <2 mg/L. Due to the limitation of the laboratory, the lowest result for Sodium Metabisulphite will only be shown as < 2 mg/L.

3. WASTE

3.1. The waste generated from this Contract includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the Contract are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Contract, the quantities of different types of waste generated in the reporting month are summarized in **Table 3.1**. Details of cumulative waste management data are presented as a waste flow table in **Appendix G**.

Table 3.1 Quantities of Waste Generated from the Contract during the reporting period

	Actual Quantities of Inert C&D Materials Generated Monthly							Actual Quantities of C&D Wastes Generated Monthly				
Reporting Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / cardboard packaging	Plastics (1)	Chemical Waste	Others, e.g., general refuse	
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	
Mar 2025	30.520	0.000	0.000	0.000	30.520	0.000	0.000	0.000	0.000	0.000	29.050	

Notes: (1) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

3.2. No dewatered sludge was generated by the operation in the reporting period.

4. LANDFILL GAS MONITORING

MONITORING REQUIREMENT

- 4.1. In accordance with Section 11 of the EM&A Manual, monthly monitoring of landfill gas is required for the first year of operation at buildings within the Project Site and consultation zone. Part of the desalination plant and the indicative area of natural slope mitigation works fall within the SENT Landfill Extension Consultation Zone; and part of the 1,200 mm diameter freshwater mains along Wan Po Road falls within the SENT Landfill and SENT Landfill Extension Consultation Zones, TKO Stage II/III Restored Landfill and TKO Stage I Restored Landfill Consultation Zones.
- 4.2. Routine monitoring is required at buildings within the Project Site and consultation zones. The monitoring frequency will be monthly for the first year of operation.
- 4.3. For the manholes and utility pits within the Project Site and along the fresh water mains, each manhole/ utility pit should be monitored with two measurements (at mid depth and base). Each measurement should be monitored for a minimum of 10 minutes. A steady reading and peak reading should be recorded at each manhole/ utility pit and for each measurement.
- 4.4. Monitoring of oxygen, methane, carbon dioxide and barometric pressure would be performed monthly during the operation phase.

MONITORING LOCATION

4.5. The area required to be monitored for landfill gas in the reporting period is shown in **Figure 4.1, Figure 4.2 and Figure 4.3**.

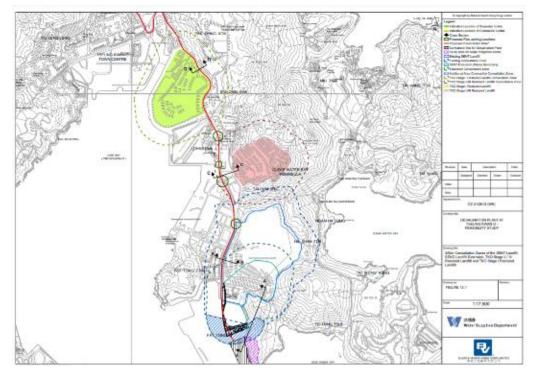


Figure 4.1 Overview of the SENT Extension Consultation Zone and the Contract Site Area

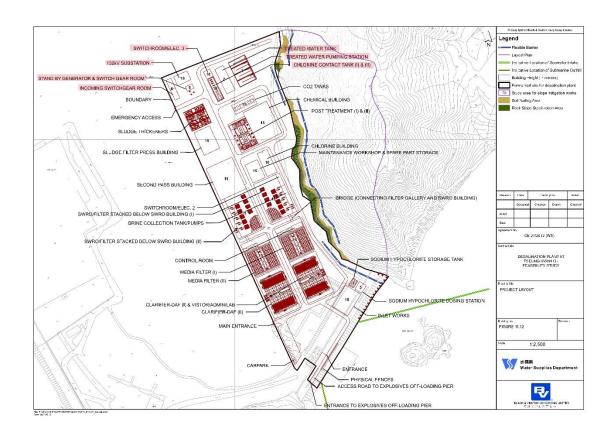


Figure 4.2 Landfill Gas Monitoring Location For Building

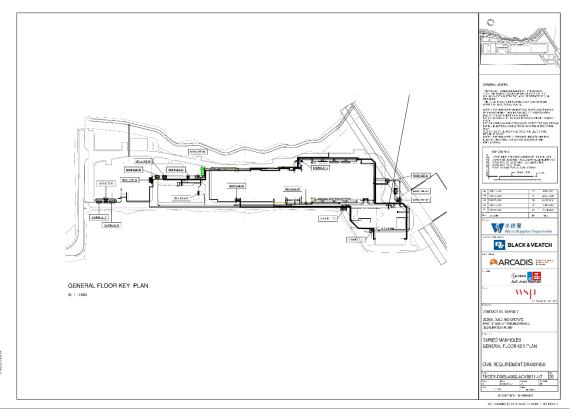


Figure 4.3 Landfill Gas Monitoring Location For Manholes/Pits

25

 $The copyright of this document is owned by \ Aurecon \ Hong \ Kong \ Limited. \ It \ may \ not \ be \ reproduced \ except \ with \ prior \ written \ approval \ from \ the \ Company.$

MONITORING PARAMETERS

4.6. The landfill gas monitoring parameters and the action and limit level are summarized in **Table 4.1**.

Table 4.1 Action and Limit Level for Landfill Gas Monitoring Equipment

Parameters	Action Level	Limit Level		
Oxygen (O ₂)	<19% 02	<19% 02		
Methane (CH ₄)	>10% LEL	>20% LEL		
Carbon Dioxide (CO ₂)	>0.5% CO ₂	>1.5% CO ₂		

MONITORING EQUIPMENT

- 4.7. Landfill Gas monitoring was carried out using intrinsically-safe, portable multi-gas monitoring instruments. The gas monitoring equipment is:
 - Complying with the Landfill Gas Hazard Assessment Guidance Note as intrinsically safe;
 - Capable of continuous barometric pressure and gas pressure measurements;
 - Normally operated in diffusion mode unless required for spot sampling, when it should be capable of operating by means of an aspirator or pump;
 - Having low battery, fault and over range indication incorporated;
 - Capable of storing monitoring data, and shall be capable of being downloaded directly;
 - Measure in the following ranges:

methane	0-100% Lower Explosion Limit (LEL) and 0-100% v/v;
oxygen	0-25% v/v;
carbon dioxide	0-5% v/v; and
barometric pressure	mBar (absolute)

• alarm (both audibly and visually) in the event that the concentrations of the following are exceeded:

methane	>10% LEL;
oxygen	<19%
carbon dioxide	>0.5% by volume
barometric pressure	mBar (absolute)

4.8. Monitoring equipment used in the reporting period are summarized in **Table 4.2**. The Landfill Gas monitoring equipment calibration certificate is presented in **Appendix E**.

Table 4.2 Landfill Gas Monitoring Equipment

Equipment	Brand and Model	Calibration Expiry Date
Portable Gas Detector	Altair 5X	22 April 2025

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Monthly EM&A Report No.8

MONITORING RESULTS AND OBSERVATIONS

4.9. In this reporting period, monthly landfill gas monitoring was conducted on 13 and 14 March 2025. No exceedances of action level and limit level was observed. The detail of result was presented in **Appendix F**.

5. LANDSCAPE

MONITORING REQUIREMENTS

5.1. In accordance with Section 8.1 of the EM&A Manual, weekly site audit shall be carried out by the ET include checking whether good site practices are being properly implemented by the Contractor and the extent of the works area within the Clear Water Bay Country Park should be checked by the ET during the weekly site audit.

SITE INSPECTION

- 5.2. Weekly site audit was carried out by the ET in the reporting month, no trespass by the Contractor outside the works area of the Project and Clear Water Bay Country Park, and no damage to the vegetation and rocky shore outside the Project area was observed in the reporting month. All plants were observed to be in satisfactory condition in the reporting month.
- 5.3. If non-compliance were found during the operation phase, the actions in accordance with the Event and Action Plan will be carried out according to **Appendix D.**

6. Ecology (Coral Monitoring)

6.1. Under the approval conditions of the EIA Report for the Project, an EM&A programme on coral for the operation phase of the Project is recommended. Pursuant to these EIA approval conditions and Condition 3.1 of the EP and FEP, details of the regular coral monitoring programme have been proposed based on the baseline coral monitoring results in the Report on operation Baseline Coral Monitoring and Regular Coral Monitoring Methodology.

MONITORING LOCATION

6.2. In accordance with Appendix B Section 5.1 of the approved supplementary EM&A Manual, two indirect impact sites (C2 and C3) and one control site (C8) as shown in **Figure 6.1** should be monitored during the operation Phase. Operation coral survey should be conducted at the indirect impact and control sites. Ten selected hard coral colonies with similar species should be tagged at each of the control and indirect impact sites before commencement of the operation phase. Tagged hard coral colonies should be monitored in open waters during the operation phase.

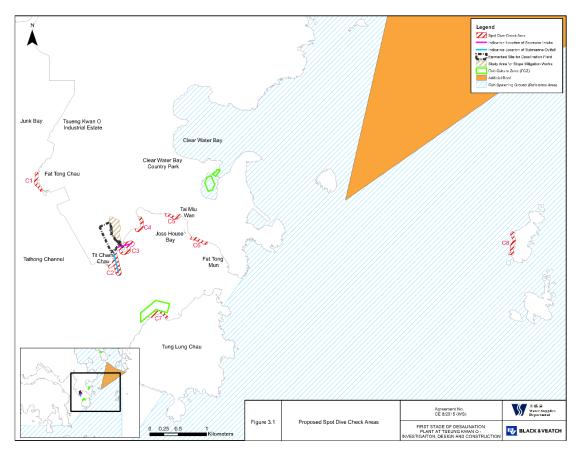


Figure 6.1 Spot Dive Check Areas Two Proposed Indirect Impact Sites (C2 and C3) and one control site (C8) during Operation Phase

ACTION AND LIMIT LEVELS

6.3. The Action and Limit Levels have been set based on the derivation criteria specified in the EM&A Manual. The Action/Limit Levels have been derived and are presented in **Table 6.1**.

Table 6.1 Action and Limit Level for Coral Monitoring Equipment

of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the control site, then the Action Level is			
15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the control site, then the Action Level is	Parameter	Action Level Definition	Limit Level Definition
exceeded exceeded	Mortality	15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the control	25% increase in the percentage of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the control

Note: If the defined Action Level or Limit Level for coral monitoring is exceeded, the actions as set out in **Table E3** will be implemented.

6.4. If non-compliance were found during the opertaion works, the actions in accordance with the Event and Action Plan will be carried out according to **Appendix D**.

MONITORING FREQUENCY

6.5. Operation phase coral monitoring shall be monitored once per month as the requirement of the first year of operational phase.

MONITORING RESULT AND OBSERVATION

6.6. Operation phase coral monitoring works was conducted on 19 March 2025. A total of 30 tagged coral colonies (10 at control site and 20 and two indirect impact sites) were monitored. All coral colonies were good in general. The detail of the monitoring is presented in **Appendix H**.

7. ECOLOGY (FISHERY MONITORING)

7.1. The purpose of the operation phase regular fisheries monitoring programme is to monitor the potential impacts on fisheries resources in the vicinity of the project site. Apart from the regular fisheries monitoring programme, a water quality monitoring programme in addition to the water quality monitoring programme in the approved EM&A Manual is also described in Section 2.4 to (i) provide supplementary information in the interpretation of the findings of the fisheries monitoring and (ii) assist the monitoring of the potential impact on the Tung Lung Chau Fish Culture Zone (FCZ) in Joss House Bay.

MONITORING LOCATION

- 7.2. In accordance with Section 2.3 of the approved Methodology Paper on Regular Fisheries Monitoring, it is recommended to set up six (6) fisheries monitoring locations in Joss House Bay and its vicinity to monitor the fisheries resources.
- 7.3. Two (2) sampling locations are set up in close proximity of the direct footprint of the proposed submarine utilities around TKO Area 137. These sampling locations represent the potential Project impact zones (i.e. areas at and in close proximity to the footprint of the proposed submarine utilities that will be directly affected by the Project works).
- 7.4. Two (2) gradient locations are proposed between the proposed submarine utilities and Tung Lung Chau FCZ to assist in the interpretation and identification of any potential fisheries impact in the vicinity of the FCZ.
- 7.5. Two (2) reference locations are proposed in the outer Joss House Bay between the waters of Tung Lung Chau and Fat Tong Mun. These reference locations are further away and will not be affected by the Project discharge (based on the EIA prediction) and will serve as control stations. Any significant fisheries impact identified at the reference locations should be caused by other natural factors or non-Project activities. The trends of fisheries conditions recorded in the reference locations will be used to assist in the interpretation of the trends of fisheries impact identified in the impact and gradient locations.
- 7.6. The coordinates of the proposed monitoring locations are shown in **Figure 7.1**.

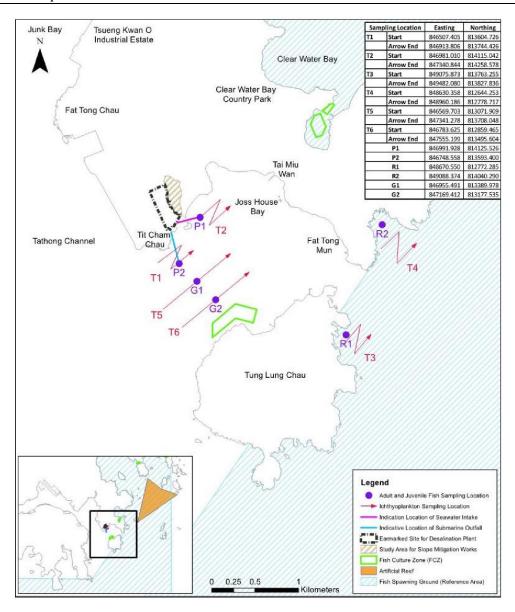


Figure 7.1 Monitoring Location of Regular Fishery Monitoring during Operation
Phase

MONITORING FREQUENCY

- 7.7. Operation phase fishery monitoring shall be carried out 2 times in wet season (April to October) and 2 times in dry season (December to March) to examine the following:
 - Fish species composition;
 - Abundance: number of fish captured;
 - Diversity of fish resources: species diversity and evenness;
 - Size: range of total length; Biomass in weight; and
 - Values of catches of commercial species: catch per unit effort (CPUE) and yield per unit effort (YPUE).

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Monthly EM&A Report No.8

MONITORING RESULT AND OBSERVATION

7.8. Operation phase fishery monitoring for dry season 2025 was carried out on 15 and 29 March 2025. The details of the monitoring will be presented in the monthly EM&A Report No. 11 for May 2025.

8. Summary of Exceedance, Complaints, Notification of Summons and Prosecutions

8.1. The Environmental Complaint Handling Procedure is shown in below **Figure 9.1**:

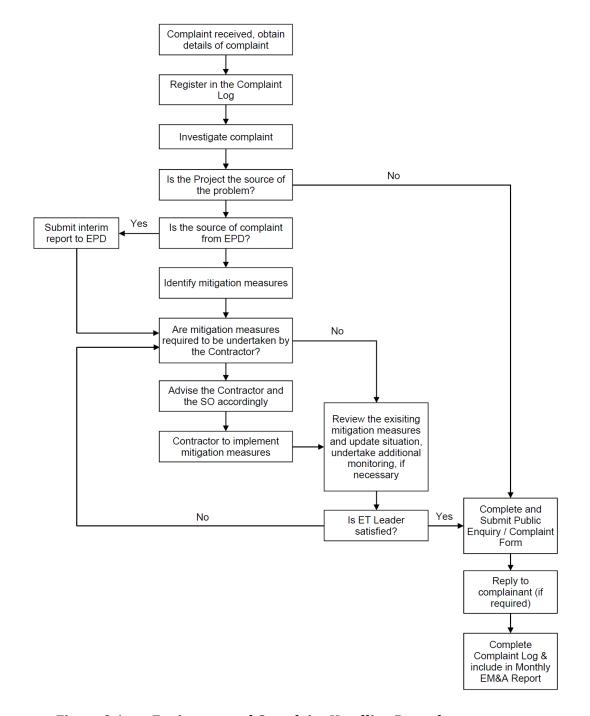


Figure 9.1 Environmental Complaint Handling Procedures

- 8.2. Operation phase EM&A works for water quality were conducted at the thirteen monitoring stations (CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 NF1, NF2 and NF3) during the reporting period in accordance with the EM&A Manual.
- 8.3. The marine water quality monitoring was conducted at the thirteen monitoring stations on 1, 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27 and 29 March 2025. Nine (9) of SS obtained had exceeded the Action Level. Thirteen (13) of SS obtained during the reporting period had exceeded the Limit Level. After investigation, all exceedances were concluded unrelated to the Project.
- 8.4. Continuous Monitoring of Effluent Quality was conducted sampling point in the reporting month. No exceedance of the sampling was obtained during the reporting period.
- 8.5. Due to the suspension of production at the plant, there was no effluent discharge from TKODP during the periods listed below:
 - From 6 a.m. on 2 March 2025 to 10 a.m. on 2 March 2025
 - From 12 p.m. on 3 March 2025 to 4 p.m. on 3 March 2025
 - From 12 a.m. on 10 March 2025 to 10 a.m. on 19 March 2025
 - From 10 p.m. on 27 March 2025 to 12 a.m. on 28 March 2025

Therefore, the effluent sampling was suspended from 10 to 18 March 2025.

- 8.6. Operation phase coral monitoring works was conducted on 19 March 2025. There is no AL/LL exceedance during the monitoring period. The detail of the monitoring was presented in **Appendix H.**
- A16. Operation phase fishery monitoring for dry season 2025 was carried out on 15 and 29 March 2025. The detail of the monitoring will be presented when the result is available.
- 8.7. In this reporting period, monthly landfill gas monitoring was conducted on 13 and 14 March 2025. No exceedances of action level and limit level was observed.
- 8.8. No environmental complaint, notification of summons and prosecution Statistics on complaint and notification of summons and prosecution are summarized in **Appendix J**.

9. EM&A SITE INSPECTION

9.1. Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 5, 11, 18, 25 and 31 March 2025 at the site portions listed in **Table 10.1** below.

Table 10.1 Summaries of Site Inspection Record

Date	Inspected Site Portion	Time
5 March 2025	TKO Area 137	14:30 - 15:30
11 March 2025	TKO Area 137	14:30 - 15:30
18 March 2025	TKO Area 137	14:30 - 15:30
25 March 2025	TKO Area 137	09:15 - 12:00
31 March 2025	TKO Area 137	14:30 - 15:30

- 9.2. Joint site inspections with IEC were carried out on 25 March 2025.
- 9.3. Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and during the reporting period are summarized in **Table 10.2**.

Table 10.2 Site Observations

Date	Environmental Observations	Follow-up Status
5 March 2025	No major environmental deficiency was observed.	N/A
11 March 2025	No major environmental deficiency was observed.	N/A
18 March 2025	No major environmental deficiency was observed.	N/A
25 March 2025	No major environmental deficiency was observed.	N/A
31 March 2025	No major environmental deficiency was observed.	N/A

9.4. According to the EIA Study Report, Environmental Permit, contract documents and EM&A Manual, the mitigation measures detailed in the documents should be implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix B**. Site inspection proforma of the reporting period is provided in **Appendix I**.

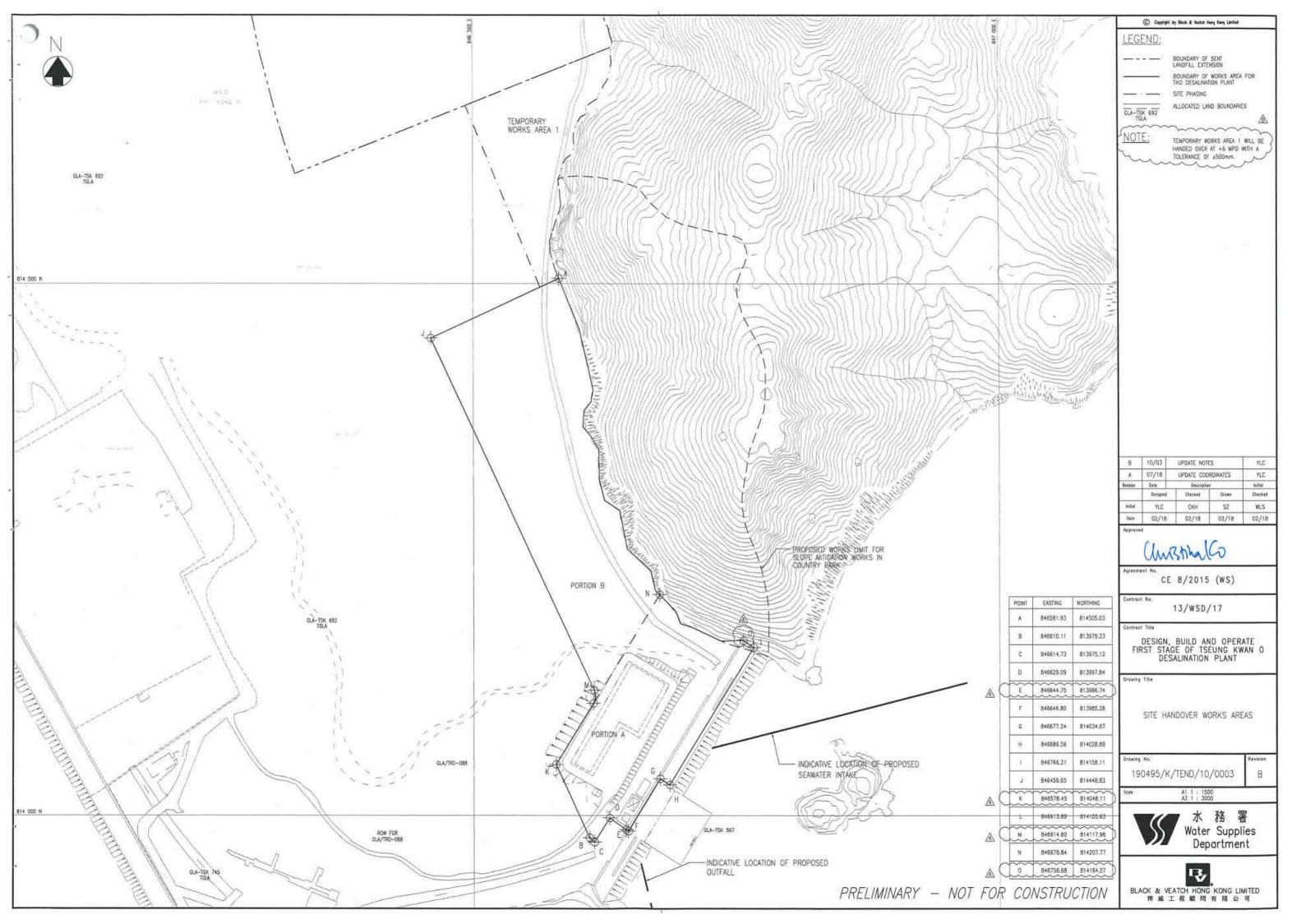
10. FUTURE KEY ISSUES

- 10.1. Works to be undertaken in the next reporting month are:
 - Potable Water Production
- 10.2. The major environmental impacts brought by the above operation works include:
 - Effluent of the water production work and system cleaning works;
 - Waste generation from the operation activities
- 10.3. The key environmental mitigation measures implemented for the Contract in this reporting period associated with the above operation works include:
 - Regularly monitoring of the effluent
 - Sorting and storage of general refuse and operation waste

11. CONCLUSIONS AND RECOMMENDATIONS

- 11.1. This is the 9th Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 March to 31 March 2025, in accordance with the EM&A Manual and the requirement under FEP-01/503/2015/B.
- 11.2. The EM&A works for operation phase water quality were conducted on 1, 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27 and 29 March 2025. Nine (9) of SS obtained had exceeded the Action Level. Thirteen (13) of SS obtained during the reporting period had exceeded the Limit Level. After investigation, all exceedances were concluded unrelated to the Project.
- 11.3. Continuous Monitoring of Effluent Quality was conducted sampling point in the reporting month. No exceedance of the sampling was obtained during the reporting period.
- 11.4. Due to the suspension of production at the plant, there was no effluent discharge from TKODP during the periods listed below:
 - From 6 a.m. on 2 March 2025 to 10 a.m. on 2 March 2025
 - From 12 p.m. on 3 March 2025 to 4 p.m. on 3 March 2025
 - From 12 a.m. on 10 March 2025 to 10 a.m. on 19 March 2025
 - From 10 p.m. on 27 March 2025 to 12 a.m. on 28 March 2025

Therefore, the effluent sampling was suspended from 10 to 18 March 2025.


- 11.5. Operation phase coral monitoring works was conducted on 19 March 2025. There is no AL/LL exceedance during the monitoring period.
- 11.6. Operation phase fishery monitoring for dry season 2025 was carried out on 15 and 29 March 2025. The detail of the monitoring will be presented when the result is available.
- 11.7. In this reporting period, monthly landfill gas monitoring was conducted on 13 and 14 March 2025. No exceedances of action level and limit level was observed.
- 11.8. Weekly environmental site inspections were conducted during the reporting period. Observations and reminders were reported during the site inspections. All items are rectified within the reporting period. The environmental performance of the project was therefore considered satisfactory.
- 11.9. No environmental complaint, notification of summons and prosecution was received in the reporting period.
- 11.10. The ET will keep track on the operation works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

Overview of Desalination Plant in Tseung Kwan O

BUILDINGS IN FIRST STAGE

CODE	NAME OF BUILDING	TOTAL G.F.A. (m²)	SITE COVERAGE (m²)
В	COMBINE SHAFT	759.876	759.876
С	ACTIDAFF	10027.547	5455,346
G	REVERSE OSMOSIS BUILDING AND ELECTRICAL BUILDING	4511,455	5367,935
н	CO2 TANKS AREA	-	-
J	PRODUCT WATER STORAGE TANK, PUMP STATION AND ELECTRICAL BUILDING	1974.610	2933.980
к	SLUDGE TREATMENT BUILDING, TANK AND PUMP ROOM	2531.044	1228,361
М	ADMINISTRATION BUILDING & ELECTRICAL BUILDING C	2459,713	1114.062
N	MAIN ELECTRICAL AND CENTRAL CHILLER PLANT BUILDING	-	459,893
R1	ELECTROCHLORINATION BUILDING & ELECTRICAL BUILDING A	657.992	825.776
Ø	132 kV SUBSTATION	-	943.560
Т	IRRIGATION WATER TANK AND PUMP ROOM	•	156.148
R2	CHEMICAL BUILDING	813.056	813,056
٧	VISITOR GALLERY	1330-410	1330.410
X1	GUARD HOUSE AND FS CONTROL ROOM	39.585	39.585
X2	GUARD HOUSE	22,035	22.035

Y R+D OUTDOOR

WASTE WATER TREATMENT PLANT

LEGEND / ABBREVIATION

H/L WINDOW HIGH LEVEL WINDOW METAL LOUVRES CAT LADDER C.L.

A.U.T. ACCESSIBLE UNISEX TOILET

PROPOSED FINISH FLOOR LEVEL IN METER ABOVE P.D. STRUCTURAL FLOOR LEVEL IN METER ABOVE P.D. MECHANNICAL VENTILATION & ARTIFICIAL LIGHTING

4.5kg CO² FIRE EXTINGUISHER

HOSE REEL FIREMAN'S LIFT

LIFT FOR THE BARRIER FREE ACCESS

PIPE DUCT

PLOT RATIO & SITE COVERAGE CALCULATION:

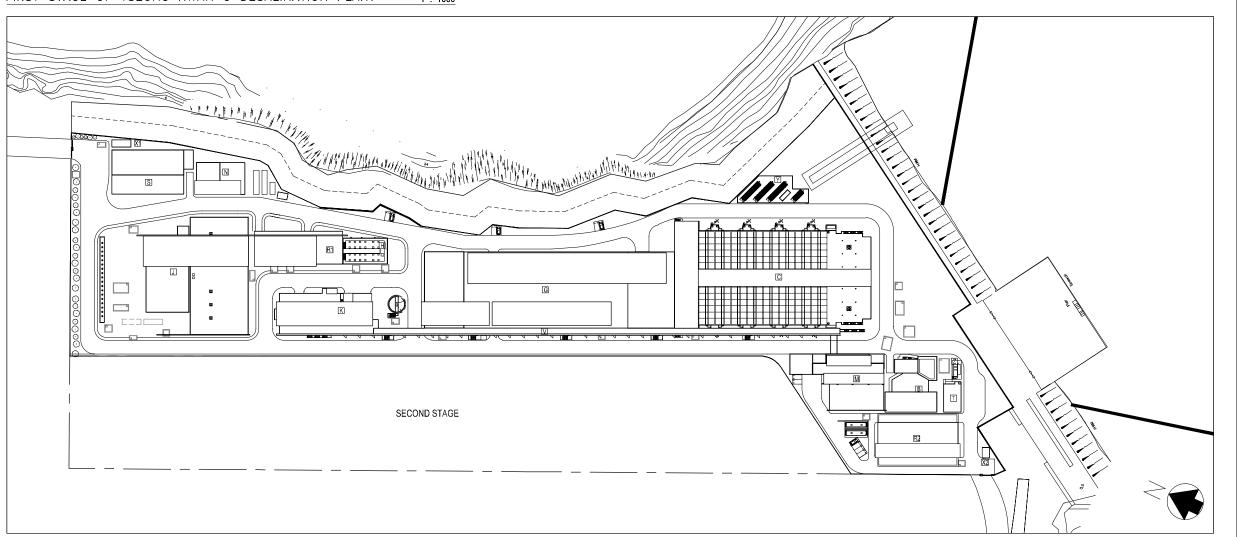
= 27.38 ... TOTAL G.F.A. TOTAL SITE COVERAGE

= 21414.841 / 56108 x 100 = 38.167% SITE COVERAGE

FIRST STAGE-INDICATIVE LOCATION OF PROPOSED SEAWATER INTAKE 大廟灣 JOSS HOUSE BAY (TAI MIU WAN)

1 : 5000

SITE LOCATION PLAN


FIRST STAGE OF TSEUNG KWAN O DESALINATION PLANT

48,000

TOTAL = 25175,323

48,000

21498.023

Appendix B

Summary of Implementation Status of Environmental Mitigation

EIA	Recommended Environmental Protection Measures/	Objectives of the	Implementation Agent	_		itation		Relevant Legislation
Reference	Mitigation Measures	recommended measures & main concerns to address		D	Stag C	е 0	status	& Guidelines
Air Quality	v							
S4.8.1	Ultra-low-sulphur diesel (ULSD) will be used for all construction plant on-site, as defined as diesel fuel containing not more than 0.005% sulphur by weight) as stipulated in Environment, Transport and Works Bureau Technical Circular (ETWB-TC(W)) No 19/2005 on Environmental Management on Construction Sites.	Land site/ During construction/ During Operation	Contractor(s)		✓	~	Implemented	Environment, Transport and Works Bureau Technical Circular (ETWB- TC(W)) No 19/2005 on Environmental Management on Construction Sites
Water Qua	ality							
S6.9 and S6.12	The sterilization water should be dechlorinated with total residual chlorine (TRC) level below 1 mg/L before discharge to public sewer. In situ testing of TRC should also be conducted for the discharge of chlorinated water for pipeline disinfection to ensure sufficient dechlorination before discharge to public sewer.	Sterilization of water mains prior to commissioning	Contractor(s)		✓	✓	N/A	Technical Memorandum for Effluents Discharged into Drainage and Sewerage Systems
S6.9	The cleaning and flushing water should also be treated and desilted to the relevant discharge requirement stipulated in TM-DSS before discharging.	Sterilization of water mains prior to commissioning	Contractor(s)		✓	✓	Implemented	Inland and Coastal Waters
S6.9	Site drainage should be well maintained, and good construction practices should be observed to ensure that oil, fuels, solvents, and other chemicals are managed, stored and handled properly and do not enter the nearby water streams.	Land site & drainage/ During construction/ During operation	Contractor(s)		✓	✓	Implemented	-
Waste Mai	nagement							
S8.5	Provision of sufficient waste disposal points and regular collection for disposal.	All area/ During construction/ During operation	Contractor(s)		✓	√	Implemented	DEVB TC(W) No. 8/2010, Enhanced Specification for Site Cleanliness and Tidiness.
S8.5	Chemical waste container shall be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed.	All area/ During construction/ During operation	Contractor(s)/WSD		✓	✓	Implemented	Waste Disposal (Chemical Waste)
S8.5	Chemical waste container shall have a capacity of less than 450 L unless the specifications have been approved by the EPD.	All area/ During construction/ During operation	Contractor(s)/WSD		✓	✓	Implemented	(General) Regulation; Code of Practice on the Packaging,
S8.5	A label in English and Chinese shall be displayed on the chemical container in accordance with instructions prescribed in Schedule 2 of the Regulations.	All area/ During construction/ During operation	Contractor(s)/ WSD		✓	✓	Implemented	Handling and Storage of Chemical Wastes

EIA	Recommended Environmental Protection Measures/	Objectives of the	Implementation Agent			ntation	Implementation	Relevant Legislation
Reference	Mitigation Measures	recommended measures & main concerns to address		D	Stag C	e O	status	& Guidelines
S8.5	Storage areas for chemical waste shall be enclosed on at least 3 sides.	All area/ During construction/ During operation	Contractor(s)/ WSD	D	✓	∀	Implemented	
S8.5	Storage areas for chemical waste shall have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest.	All area/ During construction/ During operation	Contractor(s)/ WSD		✓	√	Implemented	
S8.5	Storage areas for chemical waste shall have adequate ventilation.	All area/ During construction/ During operation	Contractor(s)/ WSD		✓	√	Implemented	
S8.5	Storage areas for chemical waste shall be covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary).	All area/ During construction/ During operation	Contractor(s)/WSD		✓	√	Implemented	
S8.5	Storage areas for chemical waste shall be arranged so that incompatible materials are appropriately separated.	All area/ During construction/ During operation	Contractor(s)/WSD		✓	✓	Implemented	
S8.5	General refuse will be stored in enclosed bins or compaction units separately from construction and chemical wastes.	All area/ During construction/ During operation	Contractor(s)/WSD		✓	*	Implemented after reminder	
S8.5	Adequate number of waste containers will be provided to avoid over-spillage of waste.	All area/ During construction/ During operation	Contractor(s)/ WSD		✓	√	Implemented	DEVB TC(W) No. 8/2010 Enhanced Specification for Site Cleanliness and Tidiness.
S8.5	A reputable waste collector will be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts.	All area/ During construction/ During operation	Contractor(s)/WSD		✓	√	Implemented	-
S8.5	Recycling bins will be provided at strategic locations within the Site to facilitate recovery of recyclable materials (including aluminum can, wastepaper, glass bottles and plastic bottles) from the Site. Materials recovered will be sold for recycling.	All area/ During construction/ During operation	Contractor(s)/WSD		✓	√	Implemented	-
Landscape				1 / 1				
S11.10 & 11.11	The construction area and area allowed for temporary structures, such as the contractor's office, will be minimized to a practical minimum. (MM1)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)		✓	✓	Implemented	-

EIA	Recommended Environmental Protection Measures/	Objectives of the	Implementation Agent	Imp		ntation	Implementation	Relevant Legislation
Reference	Mitigation Measures	recommended measures &			Stag		status	& Guidelines
		main concerns to address		D	С	0		
S11.10 &	At the detailed design stage, the design team will seek to minimize	All area/ Detailed design/	WSD/ Contractor(s)	✓	✓	✓	Implemented	-
11.11	the landscape footprint of the Project and above ground facilities,	During construction/ During						
	while satisfying all other requirements. (MM2)	operation		_	<u> </u>			
S11.10 & 11.11	Design principles will be adopted to take into account the surrounding area, particularly Clear Water Bay Country Park behind and the nearby waterfront, with due consideration given	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	~	✓	✓	Implemented	-
	to:	SP 51 51 51 51						
	- green roofs where practical (i.e. without equipment on the roof);- roadside planting;							
	aesthetic treatment of all structures;vertical greening;							
	- screen planting along application site; and							
	- landscape enhancement with amenity planting where practical							
	including planting along the edge (site boundary) fence with native shrubs where feasible, to reduce their visual impact and							
	blend them into the surrounding landscape. (MM3)							
S11.10 &	All trees within the Project Site or the potential slope mitigation	All area/ Detailed design/	WSD/ Contractor(s)	1	1	✓	Implemented	ETWB TCW No. 3/2006
11.11	works area will be carefully protected during construction	During construction/ During	,				1	- Tree Preservation.
	according to DEVB TCW No. 10/2013 - Tree Preservation (MM4)	operation						
S11.10 &	No tree within the Country Park will be felled. Trees within the	All area/ Detailed design/	WSD/ Contractor(s)	✓	✓	✓	Implemented	DEVB TC(W) No.
11.11	Site unavoidably affected by the works will be transplanted where	During construction/ During						10/2013
	necessary and practical. For trees that need to be felled, compensatory planting will be provided to the satisfaction of	operation						
	relevant Government departments.							
	A compensatory tree planting proposal including locations of tree							
	compensation will be submitted to seek relevant government							
	department's approval, in accordance with DEVB TC(W) No.							
	10/2013. (MM5)							
S11.10 &	Any slope mitigation works necessary to address natural terrain	All area/ Detailed design/	WSD/ Contractor(s)	✓	1	✓	Implemented	
11.11	hazards, will be minimized to minimize any potential	During construction/ During						
	environmental impact to the Country Park e.g. soil nailing and rock stabilization will aim to avoid existing trees e.g. should any	operation						
	restoration of vegetation be necessary, the best planting matrix							
	with native species will be established, with the aim of resembling							
	the existing vegetation. (MM6)							
S11.10 &	Dredging works for the installation of intake structures and outfall	All area/ Detailed design/	WSD/ Contractor(s)	✓	✓	✓	Implemented	
11.11	diffusers should be minimized to avoid or reduce any potential	During construction/ During						
	environmental impacts to as low as reasonably practicable	operation						
	(ALARP). The intake and outfall structures (e.g. intake openings and							
	diffuser heads) will be prefabricated and transferred to site for							

EIA	Recommended Environmental Protection Measures/	Objectives of the	Implementation Agent	Imp		ntation	Implementation	Relevant Legislation
Reference	Mitigation Measures	recommended measures & main concerns to address		D	Stag C	e O	status	& Guidelines
	installation. (MM7)			1 -	_			
S11.10 & 11.11	All night-time lighting will be reduced to a practical minimum both in terms of number of level and will be hooded and directional. (MM8) units and lux level and will be hooded and directional. (MM8)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	1	✓	√	Implemented	-
Landfill Ga								
S12.7	During all works, safety procedures should be implemented to minimize the risks of fires and explosions, asphyxiation of workers and toxicity effects resulting from contact with contaminated soil and groundwater.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	✓	*	Implemented	-
S12.7	During trenching and excavation as well as creation of confined spaces at near to or below ground level, precautions should be clearly laid down and rigidly Gas detection equipment and appropriate breathing apparatus should be available and used when entering confined spaces or trenches deeper than 1 meter.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	✓	*	Implemented	
S12.7	The Contractor should make the workers are aware of potential hazards of working in confined spaces (any chamber, manhole or culvert which is large enough to permit access to personnel). Such work in confined spaces is controlled by the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance. Following the Safety Guide to Working in Confined Spaces ensures compliance with the above regulations.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	✓	*	Implemented	
S12.7	Safety officers, specifically trained with regard to landfill gas and leachate related hazards and the appropriate actions to take in adverse circumstances, should be present on the site throughout the works, in particular, when works are undertaken below grade.	All area/ Detailed design/ During construction/operation	Contractor(s)	√	✓	✓	Implemented	
S12.7	All personnel who work on site and all visitors to the site should be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it.	All area/ Detailed design/ During construction/operation	Contractor(s)	√	✓	√	Implemented	
S12.7	Monitoring for landfill gas should be undertaken in all excavations, manholes, chambers (particularly during pipe jacking) and any confined spaces through the use of an intrinsically safe portable instrument, appropriately calibrated and capable of measuring the concentrations of methane. carbon dioxide and oxygen.	All area/ Detailed design/ During construction/operation	Contractor(s)	*	*	✓	Implemented	
S12.7	Monitoring frequency and areas to be monitored should be specified prior to commencement of groundwork, either by the Safety Officer, or by an appropriately qualified person. All measurements should be recorded and documented.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	✓	✓	Implemented	

EIA	Recommended Environmental Protection Measures/	Objectives of the	Implementation Agent	Imp	leme	ntation	Implementation	Relevant Legislation
Reference		recommended measures &		1	Stag		status	& Guidelines
		main concerns to address		D	С	0		
S12.7	Proceed drilling with adequate care and precautions against the potential hazards which may be encountered.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	√	~	Implemented	
S12.7	Prior to the commencement of the site works, the drilling contractor should devise a 'method-of- working' statement covering all normal and emergency procedures (including but not limited to number of operatives, experience and special skills of operatives, normal method of operations, emergency procedures, <i>supervisors</i> responsibilities, storage and use of safety equipment, safety procedures and signs, barriers and guarding). The site <i>supervisor</i> and all operatives must be familiar with this statement.	All area/ During construction/operation	Contractor(s)	*	1	*	Implemented	
S12.7	Where below ground service entries are necessary to the Incoming Switchgear Room, 132 kV Substation and Chlorine Store (I) and (II), the entry point should be sealed to prevent gas entry. In addition, any below grade cable trenches entering the Incoming Switchgear Room and 132 kV Substation can become the pathway for landfill gas and hence grilled metal covers should be used.	All area/ Detailed design/ During construction/operation	Contractor(s)	√	√	~	Implemented	
S12.7	It is recommended regular landfill gas monitoring should be carried out at the Incoming Switchgear Room, 132 kV Substation and Chlorine Store (I) and (II). The monitoring frequency will be monthly for the first year of operation. If the monitoring results show no sign of landfill gas migration, reduce the monitoring frequency to once every six months.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	✓	*	Implemented	
S12.7	The manholes and utility pits within the Project Site and along the fresh water mains. Each manhole/ utility pit should be monitored with two measurements (at mid depth and base). Each measurement should be monitored for a minimum of 10 minutes. A steady reading and peak reading should be recorded at each manhole/ utility pit and for each measurement. The need for venting the manhole/ utility pit and further monitoring will be reviewed after the initial monitoring.	All area/ Detailed design/ During construction/operation	Contractor(s)	✓	✓	*	Implemented	
S12.7	All construction, operation and maintenance personnel working on-site as well as visitors should be made aware of the hazards of landfill gas and its possible presence on-site. This should be achieved through a combination of posting warning signs in prominent places and also by access to detailed information on landfill gas hazards and the designs and procedural means by which these hazards are being maintenanced on-site.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	√	Implemented	

Note: D – Design stage C – Construction O – Operation

Appendix C

Impact Monitoring Schedule

Contract No. 13/WSD/17

Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Water Quality Monitoring Schedule (March 2025)

	Mon	Tue	Wed	Thu	Fri	Sat
						1
						Impact Water Quality monitoring for
						CE, CF, WSR1, WSR2, WSR3, WSR4, WSI
						WSR33, WSR36, WSR37, NF1, NF2, NF
						10000, 10000, 10007, 14 1, 14 2, 14
						Monitoring Period:
						Mid-flood: 08:00-10:37
	1	4	E	6	7	e e
	3	*	3	0	/	0
		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,		Impact Water Quality monitoring for
		CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37, NF1, NF2, NF3		CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37, NF1, NF2, NF3		CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NF
		WSR33, WSR36, WSR37, NF1, NF2, NF3		WSR33, WSR36, WSR37, NF1, NF2, NF3		WSR33, WSR36, WSR37, NF1, NF2, NF
		M		M 5 1 1 1 1 1		
		Monitoring Period: Mid-flood: 08:00-10:52		Monitoring Period: Mid-flood: 08:30-12:00		Monitoring Period: Mid-flood: 08:00-10:12
		MIG-1100G: 08:00-10:32		Mid-100d: 08:30-12:00		MIG-II00G: 08:00-10:12
		1.		 		1
	10	II	12	13	14	15
		Impact Water Quality monitoring for		Impact Water Quality monitoring for		Impact Water Quality monitoring for
		CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,		CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,		CE, CF, WSR1, WSR2, WSR3, WSR4, WSI
		WSR33, WSR36, WSR37, NF1, NF2, NF3		WSR33, WSR36, WSR37, NF1, NF2, NF3		WSR33, WSR36, WSR37, NF1, NF2, NF
		Monitoring Period:		Monitoring Period:		Monitoring Period:
		Mid-ebb: 9:38-12:28		Mid-ebb: 10:22-13:52		Mid-ebb:11:15 - 14:45
	17	18	19	20	21	22
		Impact Water Quality monitoring for		Impact Water Quality monitoring for		Impact Water Quality monitoring for
		CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,		CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,		CE, CF, WSR1, WSR2, WSR3, WSR4, WSI
		WSR33, WSR36, WSR37, NF1, NF2, NF3		WSR33, WSR36, WSR37, NF1, NF2, NF3		WSR33, WSR36, WSR37, NF1, NF2, NF
		1151055, 1151056, 1151057, 114 1, 114 2, 114 5		1101005, 1101005, 110107, 111 1, 111 2, 111 5		110100, 110100, 110101, 111 1, 111 2, 111
		Monitoring Period:		Monitoring Period:		Monitoring Period:
				Mid-flood: 08:04-11:34		Mid-flood: 9:21-12:51
		Mid-flood: 08:00-11:02				
		Mid-flood: 08:00-11:02		Mid-100d, 08.04-11.54		
		Mid-flood: 08:00-11:02		Mid-100d. 08.04-11.54		
		Mid-flood: 08:00-11:02			20	
	24	Mid-flood: 08:00-11:02	26	27	28	29
	24	Mid-flood: 08:00-11:02	26		28	
	24	Mid-flood: 08:00-11:02	26	27	28	29
	24	Mid-flood: 08:00-11:02	26	27 Impact Water Quality monitoring for	28	29 Impact Water Quality monitoring for
	24	Mid-flood: 08:00-11:02 25 Impact Water Quality monitoring for CE. CF. WSR1, WSR2, WSR3, WSR4, WSR16,	26	27 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS
	24	Mid-flood: 08:00-11:02	26	27 Impact Water Quality monitoring for	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS
	24	Mid-flood: 08:00-11:02 25 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR4, WSR4, WSR3, WSR3, WSR3, WSR36, WSR37, NF1, NF2, NF3	26	27 Inpact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR16, WSR33, WSR36, WSR37, NF1, NF2, NF3	28	29 Inpact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR4, WSR3, WSR3, WSR3, WSR36, WSR37, NF1, NF2, NF
	24	Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	29 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR4, WSR3, WSR4, WSR3, WSR4, WSR4, WSR5, WSR6, WSR7, NF1, NF2, NF4, WSR5, WSR6, WSR7, NF1, NF2, NF4, WSR5, WSR5, WSR5, WSR7, WSR5,
	24	Mid-flood: 08:00-11:02 25 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR4, WSR4, WSR3, WSR3, WSR3, WSR36, WSR37, NF1, NF2, NF3	26	27 Inpact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR16, WSR33, WSR36, WSR37, NF1, NF2, NF3	28	29 Inpact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR4, WSR3, WSR3, WSR3, WSR36, WSR37, NF1, NF2, NF
	24	Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
	24	Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WS WSR33, WSR36, WSR37, NF1, NF2, NI Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, W WSR33, WSR36, WSR37, PH, NF2, N Monitoring Period:
		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, W WSR33, WSR36, WSR37, PH, NF2, N Monitoring Period:
2		Mid-flood: 08:00-11:02 Impact Water Quality monitoring for CE. CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR3, WS	26	27 Inspect Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR7, NF1, NF2, NF3 Monitoring Period	28	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, W WSR33, WSR36, WSR57, NF1, NF2, N Monitoring Period:

Note:
- Due to safety concern of vessel transportation earlier than 0700. Water Quality Monitoring would start at 0800.
- Prioritized routing: Mid-ebb: CE—WSR16—WSR37—WSR36—WSR33—Remaining stations and Mid-flood: CF—WSR1

Contract No. 13/WSD/17

Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Tentative Water Quality Monitoring Schedule (April 2025)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
		1	2	3	4	5
		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR36, WSR37, NF1, NF2, NF3 Mid-flood (8:00 - 10:56)		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, I6, WSR33, WSR46, WSR56, WSR57, NP1, NP2, NP3 Mid-flood (8:00 - 10:37)		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR36, WSR36, WSR37, NF1, NF2, NF3 Mid-flood (10:30 - 14:00)
	7	0	0	10	11	12
	,	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR36, WSR36, WSR37, NF1, NF2, NF3 Mid-ebb (8:45 - 11:29)	7	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR4, WSR16, WSR33, WSR46, WSR17, NF1, NF2, NF3 Mid-seb (93-412-51) (with ACLMER 465 Monitoring) (with ACLMER 465 Monitoring)	Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR16, WSR26, WSR36, WSR7, NF1, NF2, NF3 Mid-cbb (1018; 1348) (with ACUMER 405 Monitoring) Continuous Efficient Monitoring (with ACUMER 408 Monitoring)
				Anti-scalant Begin Dosing		
(3)	14	15	16	17	18	19
Cortinuous Effluent Monitoring (with ACUMER 405 Monitoring)	Continuous Effuent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR3, WSR	Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality nonitoring for CE, CF, WSR1, WSR2, WSR3, WSR3, WSR4, WSR3, WSR3	Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR3, WSR4, WSR16, WSR5, WS
20	21	21	23	2.4	25	26
Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Continuous Effuent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR6, WSR37, NF1, NF2, NF3 Mid-flood (11:25 - 14:55) (with ACUMER 405 Monitoring) Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality nonitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR46, WSR33, WSR36, WSR37, NF1, NF2, NF3 Mid-ebb (8:11-11-41) (with ACUMER 405 Monitoring) Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Continuous Effluent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR3 WSR4, WSR16, WSR3 WSR4, WSR16, WSR3 WSR4, WSR47, WSR46, WSR37, WSR1, PSZ, PSZ, WSR46, WSR37, WSR3
27	28	79	30			
Cortinuus Effluent Monitoring (with ACUMER 408 Monitoring)	Continuous Effuent Monitoring (with ACUMER 405 Monitoring)	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR4, WSR4, WSR3, WSR36, WSR37, NF1, NF2, NF3 Mid-ebb (1131 - 1501) (with ACUMER 405 Monitoring) Continuous Effluent Monitoring (with ACUMER 405 Monitoring)				
 Continuous Effleurt Monitoring Parameters: Temperatures. According to the contractor information, the Anti-scalant Note: 	Oxygen, Temperature, pH, Turbidity, Salinity, Suspended \$ e, pH, Turbidity, Salinity, Total Residual Chlorine, Suspend was beging dosing from 10 April 2025, the ACUMER 405	ed Solids, Total Inorganic Nitrogen, Total Phosphorous, Iron	n, Sodium Metabisulphite and ACUMER 405.			

Note:
- Due to safety concern of vessel transportation earlier than 0700. Water Quality Monitoring would start at 0800.
- Prioritized routing: Viid-ebb: CE—WSR16—WSR37—WSR36—WSR33—Remaining stations and Mid-flood: CF—WSR1

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Landfill Gas Monitoring Schedule (March 2025)

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						1
-					_	_
2	3	4	5	6	1	8
9	10	11	12	13	14	15
				Landfill Gas Monitoring	Landfill Gas Monitoring	
	17	18	19	20	21	22
16	17	18	19	20	21	22
23	24	25	26	27	28	29
23	24	25	26	27	28	29
23	24	25	26	27	28	29
23	24	25	26	27	28	29
23	34	25	26	27	28	29
23	24	25	26	27	28	29
23	24	25	26	27	28	29
25	24	25	26	27	28	29
23	24	25	26	27	28	29
23	24	25	26	27	28	29
23	24	25	26	27	28	29
23		25	26	27	28	29
23	31	25	26	27	28	29
30		25	26	27	28	29
23		25	26	27	28	29
23		25	26	27	28	29
23		25	26	27	28	29
23		25	26	27	28	29
23		25	26	27	28	29
23		25	26	27	28	29
2.3		25	26	27	28	29
23		25	26	27	28	29
23 30		25	26	27	28	29
30	31	25	26	27	28	29
30	31	25	26	27	28	29
23 30 Remarks: 1. Monitoring Parameters Oxygen, Methane, Curbon I	31	25	26	27	28	29

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Tentative Landfill Gas Monitoring Schedule (April 2025)

Sun	Mon	Tue	Ved	Thu	Fri 3	Sat 4
		1		2	3	4
5	6	7	l .	9	10	11
12	13	14	5	16	17	18
12	15	14		10	17	10
			Landfill Gas Monitoring	Landfill Gas Monitoring		
19	20	21	12	23	24	25
26	27	28	9	30		
			-			
		l l				
'emarks'						
Remarks: . Monitoring Parameters: Oxygen, Methane, Carbon I.	Dioxide and Barometric Pressure					

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Ecological Monitoring Schedule

		Mar-25			
	Mon	Tue Wed	Thu	Fri	Sat
					1
2	3	5	6	7	8
9	10	11 12	13	14	15
					Regular Operation Phase Fishery
					Phase Fishery
					Monitoring
					Monitoring
	2-	10			
16	17	18 19	20	21	22
		Regular Operation			
		Phase Coral Monitoring	*		
		r nase corai Montornia	5		
22	24	25 26	27	28	29
	24	20		26	23
					Dogular On susting
					Regular Operation
					Regular Operation Phase Fishery
					Monitoring
30	31				
	1				

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Tentative Ecological Monitoring Schedule

			Apr-25			
	Mon	Tue		Thu	Fri	Sat
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
		Dogular Operation				
		Regular Operation				
		Regular Operation Phase Coral Monitoring				
20	21	22	23	24	25	26
20			23	27	23	
27	28	29	30			
The schedule may change due to unforesee	en circumstances (adverse weather, etc.)			1	1	1

Appendix D

Event / Action Plan

Table D1 Event and Action Plan for Water Quality Monitoring

Event	Action	party s		2.85.01
Lvent	ET	IEC	Contractor(s)	ER
Action Level being exceeded by one sampling day	Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identity source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER.	Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD.	Confirm receipt of notification of exceedance in writing: Check plant and equipment and rectify unacceptable practice	 Confirm receipt of notification of exceedance in writing.
Action Level being exceeded by two or more consecutive sampling days	Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identity source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented	Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Consider changes of working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures.	Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are proper implemented.
Limit Level being exceeded by one sampling day	Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented	Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures.	1. Confirm receipt of notification of exceedance in writing; 2. Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. 3. Ensure additional mitigation measures are proper implemented. 4. Request Contractor(s) to critically review the working methods.
Limit Level being exceeded by two or more consecutive sampling days	Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented	Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures.	1. Confirm receipt of notification of exceedance in writing: 2. Check plant and equipment and rectify unacceptable practice; 3. Critically review the need to change working methods; 4. Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; 5. Implement the agreed mitigation measures. 6. As directed by ER, slow down or stop all or part of the marine construction works/ production volume of the desalination plant until no exceedance of Limit Level.	mitigation measures and agree on the mitigation measures to be implemented. 3. Ensure additional mitigation measures are proper implemented. 4. Request Contractor(s) to critically review the working methods; 5. Consider and instruct, if necessary, the Contractor(s) to slow down or to stop all or part of

Notes: ET = Environmental Team, IEC = Independent Environmental Checker; ER = Engineering Representatives. The above actions should be taken within 1 working day after the exceedance is identified during operation phase.

Table D2 Event and Action Plan for Ecology during Operation Phase

Event				Act	ion			
Lvent	ET	S.	IEC	2411011	Con	ntractor(s)	ER	
Non- conformity on one occassion	1. 2. 3. 4.	Identify source Inform IEC and ER Discuss remedial actions with IEC, the ER and the Contractor Monitor/ audit/ review remedial actions until rectification has been completed	1. 2. 3. 4.	Check monitoring/ auditing results Check the Contractor's working method Discuss with the ET and Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Check the implementation of remedial measures	1. 2. 3. 4.	Take immediate action to avoid further problem Amend working methods if needed Submit proposals for remedial actions to ET, ER and IEC Rectify damage and implement the agreed remedial actions	3,	Notify Contractor Ensure remedial measures are properly implemented Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the works in case of serious non-conformity until situation i rectified
Repeated Non- comformity	1. 2. 3. 4.	Identify source Inform IEC, ER, EPD and AFCD Increase monitoring and audit frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor/ audit/ review remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring/ auditing	1. 2. 3. 4.	Check monitoring/ auditing results Check the Contractor's working method Discuss with the ET and Contractor on possible remedial measures Supervise the implementation of remedial measures Advise the ER on effectiveness of proposed remedial measures and keep EPD and AFCD informed	1. 2. 3. 4.	Take immediate action to avoid further problem Amend working methods if needed Submit proposals for remedial actions to ET, ER and IEC Rectify damage and implement the agreed remedial actions	1. 2. 3.	Notify Contractor Ensure remedial measures are properly implemented Consider and instruct, if necessary, the Contactor to slow down or to stop all or part of the works in the case of serious non-conformity until situation i rectified

Notes : ET = Environmental Team, IEC = Independent Environmental Checker; ER = Engineering Representatives

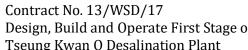


Table D3 Event and Action Plan for Operation Phase Coral Monitoring

Event	Action						
Event	ET Leader	IEC	SOR **	Contractor			
Action Level Exceedance	1. Check monitoring data 2. Inform the IEC, SOR and Contractor of the findings; 3. Increase the monitoring to at least once a month to confirm findings; 4. Propose mitigation measures for consideration	1. Discuss monitoring with the ET and the Contractor; 2. Review proposals for additional monitoring and any other measures submitted by the Contractor and advise the SOR accordingly.	1. Discuss with the IEC additional monitoring requirements and any other measures proposed by the ET; 2. Make agreement on the measures to be implemented.	1. Inform the SOR and confirm notification of the noncompliance in writing; 2. Discuss with the ET and the IEC and propose measures to the IEC and the SOR; 3. Implement the agreed measures.			
Limit Level Exceedance	1. Undertake Steps 1-4 as in the Action Level Exceedance. If further exceedance of Limit Level, propose enhancement measures for consideration.	1. Discuss monitoring with the ET and the Contractor; 2. Review proposals for additional monitoring and any other measures submitted by the Contractor and advise the SOR accordingly.	Discuss with the IEC additional monitoring requirements and any other measures proposed by the ET; Make agreement on the measures to be implemented.	confirm notification of the non-compliance in writing;			

Remark: ** The "SOR" is equivalent to the "ER" as defined in the EM&A Manual of the Project

Table D4 Event and Action Plan for Operation Phase LFG Hazard

Parameters	Level	Action
Oxygen (O2)	Action Level < 19% O ₂	Ventilate trench/void to restore O ₂ to > 19%
	Limit Level < 19% O ₂	Stop works
		Evacuate personnel/prohibit entry
		Increase ventilation to restore O2 to
		> 19%
Methane (CH ₄)	Action Level >10% LEL	Post "No Smoking" signs
		Prohibit hot works
		Increase ventilation to restore CH ₄ to <10% LEL
	Limit Level >20% LEL	Stop works
		Evacuate personnel/prohibit entry
		Increase ventilation to restore CH4
		to<10% LEL
Carbon Dioxide (CO ₂)	Action Level >0.5% CO ₂	Ventilate to restore CO ₂ to < 0.5%
	Limit Level >1.5% CO ₂	Stop works
		Evacuate personnel / prohibit entry
		Increase ventilation to restore CO ₂ to <0.5%

Appendix E

Water Quality Monitoring Equipment and Landfill Gas Equipment Calibration Certification

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE030049

Date of Issue

: 18 March 2025

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit 1608, 16/F, Tower B, Manulife Fin. Centre 223 - 231 Wai Yip Street, Kwun Tong,

Kowloon (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS Multi Parameters

Manufacturer:

YSI

Serial Number:

22C106561

Date of Received

13 March 2025

Date of Calibration:

17 March 2025

Date of Next Calibration:

16 June 2025

Request No.:

D-BE030049

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working

Thermometer Calibration Procedure

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B (Nephelometric Method)

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance (pH unit)	Result
4.00	3.96	-0.04	Satisfactory
7.42	7.27	-0.15	Satisfactory
10.01	9.96	-0.05	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer	Display Reading	Tolerance	Result
11.8	12.3	0.5	Satisfactory
21.8	21.1	-0.7	Satisfactory
34.1	33.0	-1.1	Satisfactory

Tolerance of Temperature should be less than $\pm\,2.0$ (°C)

(3) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance (mg/L)	Result
8.84	9.11	0.27	Satisfactory
6,65	6.51	-0.14	Satisfactory
3.90	3.98	0.08	Satisfactory
0.01	0.34	0.33	

Tolerance of Dissolved oxygen should be less than $\pm\,0.5$ (mg/L)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

FUNG Yuen-ching Laboratory Manager

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE030049

Date of Issue

: 18 March 2025

Page No.

:2 of 2

PART D - CALIBRATION RESULT

(4) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	10.35	3.5	Satisfactory
20	20.62	3.1	Satisfactory
30	30.38	1.3	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (a) (%)	Result
0	0.76		Satisfactory
10	10.80	8	Satisfactory
20	19.73	-1.35	Satisfactory
100	96.97	-3.03	Satisfactory
800	721.95	-9.8	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

Remark(s): -

- The "Date of Next Calibration" is recommended according to best practice principles followed by QPT or relevant international standards.
- The results relate only to the calibrated equipment as received.
- The performance of the equipment stated in this report is checked using independent reference material, with results compared against a calibrated secondary source. "Displayed Reading" denotes the figure shown on the item under calibration/checking, regardless of equipment precision or significant figures.
- The "Tolerance Limit" mentioned is the acceptance criteria applicable to similar equipment used by Quality Pro Test-Consult Ltd. or quoted from relevant international standards.

--- END OF REPORT ---

⁽a) For O NTU, Display Reading should be less than 1 NTU

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021

www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR. TOBY WAN WORK ORDER: HK2509019

CLIENT: AURECON HONG KONG LIMITED

ADDRESS: UNIT 1608, 16/F, TOWER B, SUB-BATCH:

MANULIFE FINANCIAL CENTRE,

223-231 WAI YIP STREET,

KWUN TONG, HONG KONG

LABORATORY: HONG KONG

DATE RECEIVED: 04-Mar-2025

10-Mar-2025

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: pH meter

Service Nature: Performance Check

Scope: pH Value

Brand Name/ Model No.: [Xylem]/ [SensoLyt® 700IQ SW, SensoLyt® SEA]

Serial No./ Equipment No.: [24111620]/ [N/A]
Date of Calibration: 04-March-2025

Mr Chan Wai Hung Mannix Laboratory Manager - Project

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2509019

SUB-BATCH: 0

DATE OF ISSUE: 10-Mar-2025

CLIENT: AURECON HONG KONG LIMITED

Equipment Type:

pH meter

Brand Name/ Model No.:

[Xylem]/[SensoLyt®700IQ SW, SensoLyt® SEA]

Serial No./

pH Value

[24111620]/[N/A]

Equipment No.: Date of Calibration:

04-March-2025

Date of Next Calibration: 04-June-2025

PARAMETERS:

Method Ref: APHA (23rd edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.11	+0.11
7.0	7.17	+0.17
10.0	10.09	+0.09
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Wai Hung Mannix Laboratory Manager - Project

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR. TOBY WAN WORK ORDER: HK2509019

CLIENT: AURECON HONG KONG LIMITED

ADDRESS: UNIT 1608, 16/F, TOWER B, SUB-BATCH:

MANULIFE FINANCIAL CENTRE,

223-231 WAI YIP STREET,

KWUN TONG, HONG KONG

LABORATORY: HONG KONG

DATE RECEIVED: 04-Mar-2025

10-Mar-2025

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: Salinity Meter
Service Nature: Performance Check

Scope: Salinity

Brand Name/ Model No.: [Xylem]/ [TetraCon® 700 IQ SW]

Serial No./ Equipment No.: [24110178]/ [N/A]
Date of Calibration: 04-March-2025

Mr Chan Wai Hung Mannix Laboratory Manager - Project

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2509019

SUB-BATCH:

DATE OF ISSUE: 10-Mar-2025

CLIENT: AURECON HONG KONG LIMITED

Equipment Type:

Salinity Meter

Brand Name/

[Xylem]/[TetraCon® 700 IQ SW]

Model No.: Serial No./

[24110178]/[N/A]

Equipment No.: Date of Calibration:

04-March-2025

Date of Next Calibration: 04-June-2025

PARAMETERS:

Salinity Method Ref: APHA (23rd edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
20	20.1	+0.5
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Wai Hung Mannix Laboratory Manager - Project

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR. TOBY WAN WORK ORDER: HK2509019

CLIENT: AURECON HONG KONG LIMITED

ADDRESS: UNIT 1608, 16/F, TOWER B, SUB-BATCH:

MANULIFE FINANCIAL CENTRE,

223-231 WAI YIP STREET,

KWUN TONG, HONG KONG

LABORATORY: HONG KONG

DATE RECEIVED: 04-Mar-2025

10-Mar-2025

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: Thermometer
Service Nature: Performance Check

Scope: Temperature

Brand Name/ Model No.: [Xylem]/ [TetraCon® 700IQ SW, SensoLyt®700IQ SW]

Serial No./ Equipment No.: [24111620]/ [N/A] Date of Calibration: 04-March-2025

> Mr Chan Wai Hung Mannix Laboratory Manager - Project

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2509019

SUB-BATCH:

DATE OF ISSUE: 10-Mar-2025

CLIENT: AURECON HONG KONG LIMITED

Equipment Type:

Thermometer

Brand Name/ Model No.:

[Xylem]/[TetraCon® 700IQ SW, SensoLyt®700IQ SW]

Serial No./

[24111620]/[N/A]

Equipment No.: Date of Calibration:

04-March-2025

Date of Next Calibration: 04-June-2025

PARAMETERS:

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
24.8	25.2	+0.4
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Wai Hung Mannix

Laboratory Manager - Project

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR. TOBY WAN WORK ORDER: HK2509019

CLIENT: AURECON HONG KONG LIMITED

ADDRESS: UNIT 1608, 16/F, TOWER B, SUB-BATCH:

MANULIFE FINANCIAL CENTRE,

223-231 WAI YIP STREET,

KWUN TONG, HONG KONG

LABORATORY: HONG KONG

DATE RECEIVED: 04-Mar-2025

10-Mar-2025

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: Chlorine Meter
Service Nature: Performance Check
Scope: Total Residual Chlorine

Brand Name/ Model No.: [Xylem]/ [Chlorine 3017M]

Serial No./ Equipment No.: [21D102738]/ [N/A]
Date of Calibration: 04-March-2025

Mr Chan Wai Hung Mannix Laboratory Manager - Project

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2509019

SUB-BATCH: 5

DATE OF ISSUE: 10-Mar-2025

CLIENT: AURECON HONG KONG LIMITED

Equipment Type:

Chlorine Meter Brand Name/

[Xylem]/[Chlorine 3017M] Model No.:

Serial No./

[21D102738]/[N/A]

Equipment No.:

Date of Next Calibration: 04-June-2025 Date of Calibration: 04-March-2025

PARAMETERS:

Total Residual Chlorine

Method Ref: APHA (23rd edition), 4500Cl: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (%)
1.04	1.031	-0.9
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Chan Wai Hung Mannix Laboratory Manager - Project

Ref.

2024/04/014

Date: 23-Apr-24

Customer

Aurecon Hong Kong Ltd.

CERTIFICATE FOR CALIBRATION CHECK TEST

Model	Serial No.	Calibration Check Gas	Regulator	Full Scale	Response
		1.45% Methane,		100% LEL	29% LEL
		15% Oxygen		30% Vol	15% O2
Altair 5X	221165	60ppm Carbon Monoxide	.25litre/min	1999 ppm	60 ppm CO
		20ppm Hydrogen Sulfide		200 ppm	20 ppm H2S
		10% Vol Carbon Dioxide		10% Vol	3% CO2

Remarks:

Regular inspection completed. Calibration passed

MSA Hong Kong Ltd. certify that instrument/s listed above has/have been calibrated check tested on: 23-Apr-24

This instrument was calibrated in accordance with all requirements of the specifications of MSA.

This instrument must be calibration checked prior to use in accordance with the instruction manual.

This instrument was calibrated using NIST traceable equipment and was in accordance with all requirements of the drawings and specifications of MSA.

For and on behalf of MSA Hong Kong Ltd.

Authorised Signature

Appendix F

Water Quality Monitoring Data & Landfill Gas Monitoring Data

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CE	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	11:00:00 AM	8.98	8.31	30.91	21.41	2.08	2.50	<0.1	<0.01
CE	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	11:00:00 AM	8.94	8.35	30.90	21.42	2.04	2.50	<0.1	<0.01
CE	1/03/2025	Sunny	Mid-Flood	Moderate	M	10	11:01:00 AM	8.95	8.35	30.93	21.41	2.08	3.00	<0.1	<0.01
CE	1/03/2025	Sunny	Mid-Flood	Moderate	М	10	11:01:00 AM	8.95	8.35	31.04	21.41	2.07	2.50	<0.1	<0.01
CE	1/03/2025	Sunny	Mid-Flood	Moderate	В	19	11:02:00 AM	8.93	8.35	30.94	21.42	2.04	2.50	<0.1	<0.01
CE	1/03/2025	Sunny	Mid-Flood	Moderate	В	19	11:02:00 AM	8.98	8.33	31.10	21.44	2.06	3.00	<0.1	<0.01
CF	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:03:00 AM	9.18	8.12	31.23	21.21	2.43	4.00	<0.1	<0.01
CF	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:03:00 AM	9.18	8.11	31.40	21.22	2.42	2.50	<0.1	<0.01
CF	1/03/2025	Sunny	Mid-Flood	Moderate	М	10	8:04:00 AM	9.12	8.12	31.21	21.21	2.42	4.00	<0.1	<0.01
CF	1/03/2025	Sunny	Mid-Flood	Moderate	М	10	8:04:00 AM	9.18	8.12	31.43	21.25	2.44	2.50	<0.1	<0.01
CF	1/03/2025	Sunny	Mid-Flood	Moderate	В	19	8:05:00 AM	9.15	8.10	31.21	21.22	2.44	2.50	<0.1	<0.01
CF	1/03/2025	Sunny	Mid-Flood	Moderate	В	19	8:05:00 AM	9.13	8.11	31.19	21.22	2.41	4.00	<0.1	<0.01
WSR01	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:28:00 AM	8.39	8.27	31.13	21.33	1.64	2.50	<0.1	<0.01
WSR01	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:28:00 AM	8.40	8.25	31.09	21.31	1.59	5.00	<0.1	<0.01
WSR01	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	8:29:00 AM	8.43	8.25	31.20	21.33	1.58	2.50	<0.1	<0.01
WSR01	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	8:29:00 AM	8.42	8.23	31.18	21.37	1.64	3.00	<0.1	<0.01
WSR01	1/03/2025	Sunny	Mid-Flood	Moderate	В	8	8:30:00 AM	8.43	8.26	31.16	21.34	1.69	2.50	<0.1	<0.01
WSR01	1/03/2025	Sunny	Mid-Flood	Moderate	В	8	8:30:00 AM	8.38	8.27	31.03	21.37	1.78	2.50	<0.1	<0.01
WSR02	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:47:00 AM	8.76	8.27	31.67	21.18	2.01	3.00	<0.1	<0.01
WSR02	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:47:00 AM	8.76	8.31	31.68	21.19	2.02	3.00	<0.1	<0.01
WSR02	1/03/2025	Sunny	Mid-Flood	Moderate	М	5	8:48:00 AM	8.78	8.28	31.80	21.13	2.01	2.50	<0.1	<0.01
WSR02	1/03/2025	Sunny	Mid-Flood	Moderate	М	5	8:48:00 AM	8.79	8.29	31.85	21.19	1.99	2.50	<0.1	<0.01
WSR02	1/03/2025	Sunny	Mid-Flood	Moderate	В	9	8:49:00 AM	8.73	8.30	31.76	21.19	2.01	3.00	<0.1	<0.01
WSR02	1/03/2025	Sunny	Mid-Flood	Moderate	В	9	8:49:00 AM	8.79	8.27	31.83	21.15	2.00	2.50	<0.1	<0.01
WSR03	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:01:00 AM	8.83	8.16	32.16	21.49	1.44	2.50	<0.1	<0.01
WSR03	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:01:00 AM	8.88	8.18	32.27	21.53	1.46	3.00	<0.1	<0.01
WSR03	1/03/2025	Sunny	Mid-Flood	Moderate	M	4	9:02:00 AM	8.84	8.15	32.17	21.51	1.44	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR03	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:02:00 AM	8.84	8.14	32.09	21.53	1.45	2.50	<0.1	<0.01
WSR03	1/03/2025	Sunny	Mid-Flood	Moderate	В	7	9:03:00 AM	8.83	8.16	32.11	21.54	1.44	2.50	<0.1	<0.01
WSR03	1/03/2025	Sunny	Mid-Flood	Moderate	В	7	9:03:00 AM	8.82	8.17	32.13	21.52	1.45	4.00	<0.1	<0.01
WSR04	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:15:00 AM	9.04	8.13	31.62	21.19	2.07	2.50	<0.1	<0.01
WSR04	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:15:00 AM	9.02	8.12	31.69	21.20	2.08	2.50	<0.1	<0.01
WSR04	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:16:00 AM	8.99	8.12	31.57	21.20	2.11	3.00	<0.1	<0.01
WSR04	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:16:00 AM	9.02	8.13	31.66	21.22	2.14	4.00	<0.1	<0.01
WSR04	1/03/2025	Sunny	Mid-Flood	Moderate	В	7	9:17:00 AM	8.99	8.10	31.67	21.25	2.15	4.00	<0.1	<0.01
WSR04	1/03/2025	Sunny	Mid-Flood	Moderate	В	7	9:17:00 AM	9.00	8.13	31.51	21.24	2.14	3.00	<0.1	<0.01
WSR16	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:39:00 AM	9.17	8.22	32.56	21.13	1.94	2.50	<0.1	<0.01
WSR16	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:39:00 AM	9.16	8.20	32.66	21.14	1.93	2.50	<0.1	<0.01
WSR16	1/03/2025	Sunny	Mid-Flood	Moderate	М	8	10:40:00 AM	9.12	8.21	32.62	21.15	1.92	2.50	<0.1	<0.01
WSR16	1/03/2025	Sunny	Mid-Flood	Moderate	М	8	10:40:00 AM	9.11	8.18	32.65	21.17	1.91	2.50	<0.1	<0.01
WSR16	1/03/2025	Sunny	Mid-Flood	Moderate	В	16	10:41:00 AM	9.12	8.18	32.58	21.18	1.90	2.50	<0.1	<0.01
WSR16	1/03/2025	Sunny	Mid-Flood	Moderate	В	16	10:41:00 AM	9.16	8.22	32.54	21.12	1.94	2.50	<0.1	<0.01
WSR33	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:30:00 AM	8.58	8.22	31.97	21.07	1.70	2.50	<0.1	<0.01
WSR33	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:30:00 AM	8.58	8.24	32.10	21.05	1.69	2.50	<0.1	<0.01
WSR33	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:31:00 AM	8.54	8.21	32.19	21.08	1.68	4.00	<0.1	<0.01
WSR33	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:31:00 AM	8.59	8.23	32.18	21.11	1.71	4.00	<0.1	<0.01
WSR33	1/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:32:00 AM	8.54	8.24	32.17	21.06	1.79	2.50	<0.1	<0.01
WSR33	1/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:32:00 AM	8.60	8.21	32.01	21.06	1.68	5.00	<0.1	<0.01
WSR36	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:44:00 AM	9.18	8.20	31.68	21.17	1.81	3.00	<0.1	<0.01
WSR36	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:44:00 AM	9.22	8.17	31.61	21.19	1.77	3.00	<0.1	<0.01
WSR36	1/03/2025	Sunny	Mid-Flood	Moderate	М	3	9:45:00 AM	9.19	8.20	31.62	21.15	1.74	2.50	<0.1	<0.01
WSR36	1/03/2025	Sunny	Mid-Flood	Moderate	М	3	9:45:00 AM	9.22	8.20	31.75	21.18	1.68	4.00	<0.1	<0.01
WSR36	1/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:45:00 AM	9.22	8.17	31.75	21.22	1.71	2.50	<0.1	<0.01
WSR36	1/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:45:00 AM	9.22	8.21	31.62	21.18	1.77	5.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR37	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:01:00 AM	8.52	8.29	31.67	21.30	2.15	2.50	<0.1	<0.01
WSR37	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:01:00 AM	8.53	8.26	31.63	21.27	2.02	3.00	<0.1	<0.01
WSR37	1/03/2025	Sunny	Mid-Flood	Moderate	M	4	10:02:00 AM	8.51	8.30	31.81	21.26	2.05	4.00	<0.1	<0.01
WSR37	1/03/2025	Sunny	Mid-Flood	Moderate	М	4	10:02:00 AM	8.51	8.29	31.81	21.24	1.98	2.50	<0.1	<0.01
WSR37	1/03/2025	Sunny	Mid-Flood	Moderate	В	8	10:03:00 AM	8.52	8.26	31.71	21.28	1.92	5.00	<0.1	<0.01
WSR37	1/03/2025	Sunny	Mid-Flood	Moderate	В	8	10:03:00 AM	8.53	8.29	31.67	21.26	1.95	5.00	<0.1	<0.01
NF1	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:26:00 AM	9.45	8.12	30.81	21.25	1.94	2.50	<0.1	<0.01
NF1	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:26:00 AM	9.42	8.11	30.84	21.28	1.92	2.50	<0.1	<0.01
NF1	1/03/2025	Sunny	Mid-Flood	Moderate	M	7	10:27:00 AM	9.43	8.11	30.91	21.31	1.91	2.50	<0.1	<0.01
NF1	1/03/2025	Sunny	Mid-Flood	Moderate	М	7	10:27:00 AM	9.45	8.10	30.83	21.28	1.98	2.50	<0.1	<0.01
NF1	1/03/2025	Sunny	Mid-Flood	Moderate	В	13	10:28:00 AM	9.42	8.10	30.80	21.31	1.93	4.00	<0.1	<0.01
NF1	1/03/2025	Sunny	Mid-Flood	Moderate	В	13	10:28:00 AM	9.43	8.10	30.82	21.30	1.92	2.50	<0.1	<0.01
NF2	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:18:00 AM	9.02	8.31	32.24	21.15	2.15	2.50	<0.1	<0.01
NF2	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:18:00 AM	9.01	8.30	32.24	21.14	1.97	3.00	<0.1	<0.01
NF2	1/03/2025	Sunny	Mid-Flood	Moderate	М	5	10:19:00 AM	8.97	8.30	32.40	21.15	2.13	4.00	<0.1	<0.01
NF2	1/03/2025	Sunny	Mid-Flood	Moderate	М	5	10:19:00 AM	9.01	8.31	32.27	21.13	2.16	2.50	<0.1	<0.01
NF2	1/03/2025	Sunny	Mid-Flood	Moderate	В	9	10:20:00 AM	9.00	8.31	32.21	21.13	2.13	2.50	<0.1	<0.01
NF2	1/03/2025	Sunny	Mid-Flood	Moderate	В	9	10:20:00 AM	9.02	8.28	32.38	21.18	2.15	3.00	<0.1	<0.01
NF3	1/03/2025	Sunny	Mid-Flood	Moderate	s	1	10:10:00 AM	9.08	8.21	32.35	21.56	1.77	2.50	<0.1	<0.01
NF3	1/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:10:00 AM	9.07	8.19	32.36	21.51	1.76	4.00	<0.1	<0.01
NF3	1/03/2025	Sunny	Mid-Flood	Moderate	М	6	10:11:00 AM	9.05	8.20	32.32	21.53	1.76	2.50	<0.1	<0.01
NF3	1/03/2025	Sunny	Mid-Flood	Moderate	М	6	10:11:00 AM	9.04	8.23	32.24	21.52	1.79	2.50	<0.1	<0.01
NF3	1/03/2025	Sunny	Mid-Flood	Moderate	В	11	10:12:00 AM	9.08	8.19	32.31	21.49	1.80	2.50	<0.1	<0.01
NF3	1/03/2025	Sunny	Mid-Flood	Moderate	В	11	10:12:00 AM	9.09	8.22	32.21	21.54	1.78	3.00	<0.1	<0.01
CE	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	11:09:00 AM	8.73	8.20	31.97	20.91	2.23	2.50	<0.1	<0.01
CE	4/03/2025	Sunny	Mid-Flood	Moderate	s	1	11:09:00 AM	8.65	8.24	32.00	20.91	2.41	3.00	<0.1	<0.01
CE	4/03/2025	Sunny	Mid-Flood	Moderate	M	11	11:10:00 AM	8.70	8.24	32.00	20.87	2.42	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CE	4/03/2025	Sunny	Mid-Flood	Moderate	M	11	11:10:00 AM	8.64	8.25	32.04	20.89	2.39	3.00	<0.1	<0.01
CE	4/03/2025	Sunny	Mid-Flood	Moderate	В	22	11:11:00 AM	8.64	8.21	31.90	20.89	2.43	2.50	<0.1	<0.01
CE	4/03/2025	Sunny	Mid-Flood	Moderate	В	22	11:11:00 AM	8.72	8.24	31.96	20.88	2.42	3.00	<0.1	<0.01
CF	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:08:00 AM	8.33	8.27	32.32	21.02	2.49	4.00	<0.1	<0.01
CF	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:08:00 AM	8.36	8.28	32.23	21.05	2.56	2.50	<0.1	<0.01
CF	4/03/2025	Sunny	Mid-Flood	Moderate	М	11	8:09:00 AM	8.31	8.27	32.30	21.06	2.55	2.50	<0.1	<0.01
CF	4/03/2025	Sunny	Mid-Flood	Moderate	М	11	8:09:00 AM	8.37	8.30	32.38	21.02	2.49	2.50	<0.1	<0.01
CF	4/03/2025	Sunny	Mid-Flood	Moderate	В	21	8:10:00 AM	8.31	8.29	32.37	21.01	2.51	2.50	<0.1	<0.01
CF	4/03/2025	Sunny	Mid-Flood	Moderate	В	21	8:10:00 AM	8.43	8.29	32.35	21.02	2.50	3.00	<0.1	<0.01
WSR01	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:32:00 AM	8.61	8.28	30.73	21.08	1.86	2.50	<0.1	<0.01
WSR01	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:32:00 AM	8.59	8.28	30.65	21.07	1.89	2.50	<0.1	<0.01
WSR01	4/03/2025	Sunny	Mid-Flood	Moderate	М	5	8:33:00 AM	8.61	8.27	30.63	21.06	1.86	2.50	<0.1	<0.01
WSR01	4/03/2025	Sunny	Mid-Flood	Moderate	М	5	8:33:00 AM	8.67	8.27	30.60	21.06	1.85	3.00	<0.1	<0.01
WSR01	4/03/2025	Sunny	Mid-Flood	Moderate	В	8	8:34:00 AM	8.57	8.27	30.70	21.06	1.85	3.00	<0.1	<0.01
WSR01	4/03/2025	Sunny	Mid-Flood	Moderate	В	8	8:34:00 AM	8.56	8.27	30.73	21.05	1.82	2.50	<0.1	<0.01
WSR02	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:51:00 AM	8.64	8.23	30.96	21.17	1.77	2.50	<0.1	<0.01
WSR02	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:51:00 AM	8.71	8.23	30.95	21.15	1.74	2.50	<0.1	<0.01
WSR02	4/03/2025	Sunny	Mid-Flood	Moderate	М	5	8:52:00 AM	8.69	8.24	31.02	21.17	1.78	4.00	<0.1	<0.01
WSR02	4/03/2025	Sunny	Mid-Flood	Moderate	М	5	8:52:00 AM	8.68	8.24	30.89	21.16	1.75	4.00	<0.1	<0.01
WSR02	4/03/2025	Sunny	Mid-Flood	Moderate	В	9	8:53:00 AM	8.57	8.28	30.94	21.17	1.80	4.00	<0.1	<0.01
WSR02	4/03/2025	Sunny	Mid-Flood	Moderate	В	9	8:53:00 AM	8.59	8.27	30.95	21.19	1.79	5.00	<0.1	<0.01
WSR03	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:05:00 AM	8.42	8.16	31.23	21.07	1.97	7.00	<0.1	<0.01
WSR03	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:05:00 AM	8.42	8.19	31.07	21.10	1.93	4.00	<0.1	<0.01
WSR03	4/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:06:00 AM	8.48	8.19	31.22	21.10	1.99	5.00	<0.1	<0.01
WSR03	4/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:06:00 AM	8.52	8.16	31.10	21.10	1.93	4.00	<0.1	<0.01
WSR03	4/03/2025	Sunny	Mid-Flood	Moderate	В	8	9:07:00 AM	8.50	8.16	31.10	21.05	1.94	4.00	<0.1	<0.01
WSR03	4/03/2025	Sunny	Mid-Flood	Moderate	В	8	9:07:00 AM	8.54	8.21	31.18	21.05	1.97	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR04	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:20:00 AM	8.57	8.21	31.15	21.16	1.82	4.00	<0.1	<0.01
WSR04	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:20:00 AM	8.62	8.21	31.09	21.18	1.88	5.00	<0.1	<0.01
WSR04	4/03/2025	Sunny	Mid-Flood	Moderate	M	4	9:21:00 AM	8.53	8.18	31.15	21.18	1.85	3.00	<0.1	<0.01
WSR04	4/03/2025	Sunny	Mid-Flood	Moderate	М	4	9:21:00 AM	8.65	8.19	31.13	21.19	1.82	5.00	<0.1	<0.01
WSR04	4/03/2025	Sunny	Mid-Flood	Moderate	В	7	9:22:00 AM	8.52	8.17	31.05	21.15	1.78	5.00	<0.1	<0.01
WSR04	4/03/2025	Sunny	Mid-Flood	Moderate	В	7	9:22:00 AM	8.67	8.21	31.04	21.19	1.83	4.00	<0.1	<0.01
WSR16	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:46:00 AM	8.39	8.18	32.23	20.92	1.63	4.00	<0.1	<0.01
WSR16	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:46:00 AM	8.33	8.22	32.22	20.93	1.66	4.00	<0.1	<0.01
WSR16	4/03/2025	Sunny	Mid-Flood	Moderate	М	8	10:47:00 AM	8.32	8.18	32.15	20.95	1.65	4.00	<0.1	<0.01
WSR16	4/03/2025	Sunny	Mid-Flood	Moderate	М	8	10:47:00 AM	8.38	8.19	32.31	20.92	1.66	5.00	<0.1	<0.01
WSR16	4/03/2025	Sunny	Mid-Flood	Moderate	В	15	10:48:00 AM	8.47	8.21	32.14	20.93	1.67	3.00	<0.1	<0.01
WSR16	4/03/2025	Sunny	Mid-Flood	Moderate	В	15	10:48:00 AM	8.31	8.19	32.29	20.94	1.61	3.00	<0.1	<0.01
WSR33	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:36:00 AM	8.54	8.26	31.20	21.20	1.55	4.00	<0.1	<0.01
WSR33	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:36:00 AM	8.54	8.27	31.22	21.21	1.57	4.00	<0.1	<0.01
WSR33	4/03/2025	Sunny	Mid-Flood	Moderate	M	4	9:37:00 AM	8.60	8.25	31.34	21.25	1.58	4.00	<0.1	<0.01
WSR33	4/03/2025	Sunny	Mid-Flood	Moderate	M	4	9:37:00 AM	8.54	8.23	31.20	21.25	1.59	4.00	<0.1	<0.01
WSR33	4/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:38:00 AM	8.59	8.26	31.37	21.21	1.52	3.00	<0.1	<0.01
WSR33	4/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:38:00 AM	8.68	8.24	31.23	21.21	1.55	4.00	<0.1	<0.01
WSR36	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:52:00 AM	8.45	8.24	31.93	20.98	1.96	4.00	<0.1	<0.01
WSR36	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:52:00 AM	8.29	8.22	32.06	20.98	1.98	3.00	<0.1	<0.01
WSR36	4/03/2025	Sunny	Mid-Flood	Moderate	M	3	9:53:00 AM	8.43	8.22	32.03	21.00	2.03	4.00	<0.1	<0.01
WSR36	4/03/2025	Sunny	Mid-Flood	Moderate	М	3	9:53:00 AM	8.29	8.21	32.01	20.98	1.99	5.00	<0.1	<0.01
WSR36	4/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:53:00 AM	8.32	8.20	32.12	20.97	2.03	6.00	<0.1	<0.01
WSR36	4/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:53:00 AM	8.30	8.25	32.02	20.96	1.98	3.00	<0.1	<0.01
WSR37	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:08:00 AM	8.76	8.33	32.17	21.17	1.73	3.00	<0.1	<0.01
WSR37	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:08:00 AM	8.72	8.32	32.18	21.16	1.72	3.00	<0.1	<0.01
WSR37	4/03/2025	Sunny	Mid-Flood	Moderate	M	4	10:09:00 AM	8.66	8.34	32.28	21.17	1.75	5.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR37	4/03/2025	Sunny	Mid-Flood	Moderate	M	4	10:09:00 AM	8.74	8.35	32.37	21.14	1.73	4.00	<0.1	<0.01
WSR37	4/03/2025	Sunny	Mid-Flood	Moderate	В	7	10:10:00 AM	8.74	8.31	32.20	21.14	1.70	5.00	<0.1	<0.01
WSR37	4/03/2025	Sunny	Mid-Flood	Moderate	В	7	10:10:00 AM	8.67	8.31	32.26	21.17	1.71	4.00	<0.1	<0.01
NF1	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:31:00 AM	9.43	8.17	31.50	20.99	1.86	2.50	<0.1	<0.01
NF1	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:31:00 AM	9.28	8.17	31.41	20.99	1.84	5.00	<0.1	<0.01
NF1	4/03/2025	Sunny	Mid-Flood	Moderate	М	7	10:32:00 AM	9.27	8.15	31.36	21.04	1.86	2.50	<0.1	<0.01
NF1	4/03/2025	Sunny	Mid-Flood	Moderate	М	7	10:32:00 AM	9.36	8.18	31.33	21.04	1.85	5.00	<0.1	<0.01
NF1	4/03/2025	Sunny	Mid-Flood	Moderate	В	13	10:33:00 AM	9.32	8.13	31.51	21.00	1.85	4.00	<0.1	<0.01
NF1	4/03/2025	Sunny	Mid-Flood	Moderate	В	13	10:33:00 AM	9.27	8.15	31.41	21.01	1.84	3.00	<0.1	<0.01
NF2	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:23:00 AM	8.88	8.29	31.17	21.14	1.92	3.00	<0.1	<0.01
NF2	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:23:00 AM	8.90	8.26	31.25	21.13	1.81	4.00	<0.1	<0.01
NF2	4/03/2025	Sunny	Mid-Flood	Moderate	М	5	10:24:00 AM	8.99	8.26	31.10	21.15	1.86	4.00	<0.1	<0.01
NF2	4/03/2025	Sunny	Mid-Flood	Moderate	М	5	10:24:00 AM	8.93	8.27	31.30	21.13	1.85	4.00	<0.1	<0.01
NF2	4/03/2025	Sunny	Mid-Flood	Moderate	В	9	10:25:00 AM	8.91	8.30	31.10	21.13	1.83	3.00	<0.1	<0.01
NF2	4/03/2025	Sunny	Mid-Flood	Moderate	В	9	10:25:00 AM	8.89	8.26	31.26	21.15	1.97	3.00	<0.1	<0.01
NF3	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:15:00 AM	8.77	8.29	31.89	20.89	1.54	5.00	<0.1	<0.01
NF3	4/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:15:00 AM	8.91	8.30	31.99	20.89	1.52	3.00	<0.1	<0.01
NF3	4/03/2025	Sunny	Mid-Flood	Moderate	M	6	10:16:00 AM	8.82	8.29	32.04	20.90	1.55	4.00	<0.1	<0.01
NF3	4/03/2025	Sunny	Mid-Flood	Moderate	М	6	10:16:00 AM	8.87	8.29	32.01	20.92	1.57	5.00	<0.1	<0.01
NF3	4/03/2025	Sunny	Mid-Flood	Moderate	В	11	10:17:00 AM	8.81	8.29	31.97	20.90	1.56	4.00	<0.1	<0.01
NF3	4/03/2025	Sunny	Mid-Flood	Moderate	В	11	10:17:00 AM	8.80	8.28	31.87	20.89	1.52	4.00	<0.1	<0.01
CE	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:33:00 AM	9.28	8.23	32.03	20.18	2.44	2.50	<0.1	<0.01
CE	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:33:00 AM	9.21	8.22	31.94	20.16	2.43	2.50	<0.1	<0.01
CE	6/03/2025	Cloudy	Mid-Flood	Moderate	M	12	11:34:00 AM	9.31	8.23	31.97	20.15	2.47	2.50	<0.1	<0.01
CE	6/03/2025	Cloudy	Mid-Flood	Moderate	M	12	11:34:00 AM	9.25	8.21	32.05	20.17	2.42	2.50	<0.1	<0.01
CE	6/03/2025	Cloudy	Mid-Flood	Moderate	В	23	11:35:00 AM	9.42	8.24	31.92	20.15	2.45	4.00	<0.1	<0.01
CE	6/03/2025	Cloudy	Mid-Flood	Moderate	В	23	11:35:00 AM	9.23	8.19	32.01	20.20	2.43	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CF	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:31:00 AM	8.86	8.34	32.19	20.18	2.67	2.50	<0.1	<0.01
CF	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:31:00 AM	8.94	8.33	32.08	20.13	2.71	3.00	<0.1	<0.01
CF	6/03/2025	Cloudy	Mid-Flood	Moderate	M	11	8:32:00 AM	8.89	8.31	32.22	20.19	2.68	2.50	<0.1	<0.01
CF	6/03/2025	Cloudy	Mid-Flood	Moderate	М	11	8:32:00 AM	8.84	8.32	32.08	20.13	2.71	5.00	<0.1	<0.01
CF	6/03/2025	Cloudy	Mid-Flood	Moderate	В	21	8:33:00 AM	8.79	8.32	32.18	20.14	2.72	4.00	<0.1	<0.01
CF	6/03/2025	Cloudy	Mid-Flood	Moderate	В	21	8:33:00 AM	8.90	8.34	32.11	20.16	2.71	2.50	<0.1	<0.01
WSR01	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:56:00 AM	8.81	8.28	32.20	20.21	2.05	2.50	<0.1	<0.01
WSR01	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:56:00 AM	8.72	8.26	32.22	20.19	2.06	2.50	<0.1	<0.01
WSR01	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	8:57:00 AM	8.75	8.29	32.28	20.15	2.09	2.50	<0.1	<0.01
WSR01	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	8:57:00 AM	8.84	8.26	32.17	20.17	2.06	5.00	<0.1	<0.01
WSR01	6/03/2025	Cloudy	Mid-Flood	Moderate	В	7	8:58:00 AM	8.81	8.27	32.22	20.13	2.08	3.00	<0.1	<0.01
WSR01	6/03/2025	Cloudy	Mid-Flood	Moderate	В	7	8:58:00 AM	8.65	8.25	32.12	20.21	2.11	2.50	<0.1	<0.01
WSR02	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:15:00 AM	8.71	8.23	31.44	20.04	2.16	2.50	<0.1	<0.01
WSR02	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:15:00 AM	8.56	8.25	31.33	20.04	2.13	2.50	<0.1	<0.01
WSR02	6/03/2025	Cloudy	Mid-Flood	Moderate	М	5	9:16:00 AM	8.58	8.26	31.46	20.09	2.09	2.50	<0.1	<0.01
WSR02	6/03/2025	Cloudy	Mid-Flood	Moderate	М	5	9:16:00 AM	8.72	8.24	31.48	20.04	2.15	4.00	<0.1	<0.01
WSR02	6/03/2025	Cloudy	Mid-Flood	Moderate	В	8	9:17:00 AM	8.70	8.27	31.36	20.04	2.15	3.00	<0.1	<0.01
WSR02	6/03/2025	Cloudy	Mid-Flood	Moderate	В	8	9:17:00 AM	8.55	8.23	31.35	20.09	2.14	2.50	<0.1	<0.01
WSR03	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:30:00 AM	8.92	8.32	32.03	20.30	2.15	2.50	<0.1	<0.01
WSR03	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:30:00 AM	8.97	8.31	32.14	20.30	2.16	2.50	<0.1	<0.01
WSR03	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:31:00 AM	9.03	8.31	32.00	20.29	2.14	3.00	<0.1	<0.01
WSR03	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:31:00 AM	9.01	8.28	32.18	20.26	2.12	4.00	<0.1	<0.01
WSR03	6/03/2025	Cloudy	Mid-Flood	Moderate	В	7	9:32:00 AM	9.02	8.28	32.01	20.21	2.09	4.00	<0.1	<0.01
WSR03	6/03/2025	Cloudy	Mid-Flood	Moderate	В	7	9:32:00 AM	9.10	8.32	32.02	20.25	2.18	2.50	<0.1	<0.01
WSR04	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:46:00 AM	9.44	8.29	31.00	20.22	2.11	2.50	<0.1	<0.01
WSR04	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:46:00 AM	9.46	8.28	30.93	20.22	2.12	3.00	<0.1	<0.01
WSR04	6/03/2025	Cloudy	Mid-Flood	Moderate	M	4	9:47:00 AM	9.60	8.31	31.05	20.28	2.16	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR04	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:47:00 AM	9.57	8.27	30.88	20.24	2.08	4.00	<0.1	<0.01
WSR04	6/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:48:00 AM	9.47	8.27	30.98	20.20	2.11	2.50	<0.1	<0.01
WSR04	6/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:48:00 AM	9.46	8.27	30.99	20.27	2.14	2.50	<0.1	<0.01
WSR16	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:11:00 AM	8.19	8.35	32.11	20.21	2.02	2.50	<0.1	<0.01
WSR16	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:11:00 AM	8.00	8.32	32.10	20.26	2.06	3.00	<0.1	<0.01
WSR16	6/03/2025	Cloudy	Mid-Flood	Moderate	М	8	11:12:00 AM	8.20	8.33	32.26	20.22	2.08	2.50	<0.1	<0.01
WSR16	6/03/2025	Cloudy	Mid-Flood	Moderate	М	8	11:12:00 AM	8.11	8.34	32.08	20.23	2.07	4.00	<0.1	<0.01
WSR16	6/03/2025	Cloudy	Mid-Flood	Moderate	В	14	11:13:00 AM	8.07	8.31	32.26	20.21	2.06	2.50	<0.1	<0.01
WSR16	6/03/2025	Cloudy	Mid-Flood	Moderate	В	14	11:13:00 AM	8.06	8.33	32.19	20.23	2.08	3.00	<0.1	<0.01
WSR33	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:02:00 AM	8.72	8.26	31.86	20.34	1.89	3.00	<0.1	<0.01
WSR33	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:02:00 AM	8.59	8.30	31.97	20.34	1.91	2.50	<0.1	<0.01
WSR33	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	10:03:00 AM	8.58	8.27	31.82	20.31	1.87	5.00	<0.1	<0.01
WSR33	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	10:03:00 AM	8.57	8.26	31.83	20.28	1.82	3.00	<0.1	<0.01
WSR33	6/03/2025	Cloudy	Mid-Flood	Moderate	В	6	10:04:00 AM	8.51	8.26	31.98	20.25	1.85	2.50	<0.1	<0.01
WSR33	6/03/2025	Cloudy	Mid-Flood	Moderate	В	6	10:04:00 AM	8.70	8.29	31.79	20.28	1.82	3.00	<0.1	<0.01
WSR36	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:17:00 AM	9.08	8.13	31.64	20.17	2.01	4.00	<0.1	<0.01
WSR36	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:17:00 AM	9.14	8.09	31.50	20.18	2.04	3.00	<0.1	<0.01
WSR36	6/03/2025	Cloudy	Mid-Flood	Moderate	М	3	10:18:00 AM	9.17	8.14	31.47	20.21	2.01	2.50	<0.1	<0.01
WSR36	6/03/2025	Cloudy	Mid-Flood	Moderate	М	3	10:18:00 AM	9.27	8.14	31.52	20.21	2.07	3.00	<0.1	<0.01
WSR36	6/03/2025	Cloudy	Mid-Flood	Moderate	В	6	10:18:00 AM	9.19	8.12	31.63	20.18	2.03	2.50	<0.1	<0.01
WSR36	6/03/2025	Cloudy	Mid-Flood	Moderate	В	6	10:18:00 AM	9.19	8.09	31.59	20.22	2.03	2.50	<0.1	<0.01
WSR37	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:33:00 AM	8.09	8.11	31.84	20.11	2.05	2.50	<0.1	<0.01
WSR37	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:33:00 AM	8.09	8.11	31.72	20.14	2.09	2.50	<0.1	<0.01
WSR37	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	10:34:00 AM	8.09	8.13	31.78	20.10	2.03	2.50	<0.1	<0.01
WSR37	6/03/2025	Cloudy	Mid-Flood	Moderate	М	4	10:34:00 AM	8.15	8.11	31.74	20.10	2.05	2.50	<0.1	<0.01
WSR37	6/03/2025	Cloudy	Mid-Flood	Moderate	В	8	10:35:00 AM	8.12	8.10	31.79	20.10	2.07	5.00	<0.1	<0.01
WSR37	6/03/2025	Cloudy	Mid-Flood	Moderate	В	8	10:35:00 AM	8.18	8.11	31.72	20.15	2.07	9.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF1	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:58:00 AM	8.64	8.17	31.06	20.25	2.00	2.50	<0.1	<0.01
NF1	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:58:00 AM	8.65	8.18	31.15	20.27	2.01	2.50	<0.1	<0.01
NF1	6/03/2025	Cloudy	Mid-Flood	Moderate	М	7	10:59:00 AM	8.50	8.17	31.08	20.25	1.99	3.00	<0.1	<0.01
NF1	6/03/2025	Cloudy	Mid-Flood	Moderate	М	7	10:59:00 AM	8.65	8.19	31.05	20.19	2.02	2.50	<0.1	<0.01
NF1	6/03/2025	Cloudy	Mid-Flood	Moderate	В	13	11:00:00 AM	8.64	8.21	31.03	20.26	1.99	5.00	<0.1	<0.01
NF1	6/03/2025	Cloudy	Mid-Flood	Moderate	В	13	11:00:00 AM	8.51	8.17	30.99	20.25	2.05	2.50	<0.1	<0.01
NF2	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:50:00 AM	9.02	8.12	31.05	20.22	1.77	2.50	<0.1	<0.01
NF2	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:50:00 AM	8.91	8.11	30.99	20.25	1.80	2.50	<0.1	<0.01
NF2	6/03/2025	Cloudy	Mid-Flood	Moderate	М	5	10:51:00 AM	9.00	8.16	31.06	20.24	1.79	2.50	<0.1	<0.01
NF2	6/03/2025	Cloudy	Mid-Flood	Moderate	М	5	10:51:00 AM	8.92	8.12	31.01	20.19	1.80	2.50	<0.1	<0.01
NF2	6/03/2025	Cloudy	Mid-Flood	Moderate	В	10	10:52:00 AM	8.94	8.13	31.16	20.25	1.76	2.50	<0.1	<0.01
NF2	6/03/2025	Cloudy	Mid-Flood	Moderate	В	10	10:52:00 AM	8.95	8.15	31.15	20.21	1.82	2.00	<0.1	<0.01
NF3	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:43:00 AM	9.02	8.19	32.35	20.01	2.11	2.50	<0.1	<0.01
NF3	6/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:43:00 AM	9.10	8.21	32.19	20.04	2.05	2.50	<0.1	<0.01
NF3	6/03/2025	Cloudy	Mid-Flood	Moderate	М	6	10:44:00 AM	9.06	8.17	32.31	20.02	2.04	2.50	<0.1	<0.01
NF3	6/03/2025	Cloudy	Mid-Flood	Moderate	М	6	10:44:00 AM	9.06	8.17	32.22	19.99	2.09	3.00	<0.1	<0.01
NF3	6/03/2025	Cloudy	Mid-Flood	Moderate	В	11	10:45:00 AM	9.01	8.17	32.33	20.04	2.11	6.00	<0.1	<0.01
NF3	6/03/2025	Cloudy	Mid-Flood	Moderate	В	11	10:45:00 AM	9.03	8.20	32.27	20.05	2.11	11.00	<0.1	<0.01
CE	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:14:00 AM	8.39	8.02	31.52	20.36	1.98	2.50	<0.1	<0.01
CE	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:14:00 AM	8.44	8.06	31.49	20.38	2.04	2.50	<0.1	<0.01
CE	8/03/2025	Cloudy	Mid-Flood	Moderate	М	11	11:15:00 AM	8.40	8.00	31.52	20.36	2.03	2.50	<0.1	<0.01
CE	8/03/2025	Cloudy	Mid-Flood	Moderate	М	11	11:15:00 AM	8.44	8.05	31.50	20.29	2.08	3.00	<0.1	<0.01
CE	8/03/2025	Cloudy	Mid-Flood	Moderate	В	21	11:16:00 AM	8.36	8.04	31.52	20.35	2.12	3.00	<0.1	<0.01
CE	8/03/2025	Cloudy	Mid-Flood	Moderate	В	21	11:16:00 AM	8.39	8.03	31.55	20.39	2.15	3.00	<0.1	<0.01
CF	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:11:00 AM	8.70	8.15	31.81	20.35	2.33	3.00	<0.1	<0.01
CF	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:11:00 AM	8.64	8.22	31.84	20.38	2.36	3.00	<0.1	<0.01
CF	8/03/2025	Cloudy	Mid-Flood	Moderate	M	11	8:12:00 AM	8.59	8.22	31.87	20.35	2.27	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CF	8/03/2025	Cloudy	Mid-Flood	Moderate	М	11	8:12:00 AM	8.70	8.18	31.80	20.36	2.25	6.00	<0.1	<0.01
CF	8/03/2025	Cloudy	Mid-Flood	Moderate	В	20	8:13:00 AM	8.70	8.15	31.81	20.40	2.24	2.50	<0.1	<0.01
CF	8/03/2025	Cloudy	Mid-Flood	Moderate	В	20	8:13:00 AM	8.59	8.21	31.84	20.42	2.23	2.50	<0.1	<0.01
WSR01	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:35:00 AM	8.84	8.09	31.93	20.50	1.54	3.00	<0.1	<0.01
WSR01	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:35:00 AM	8.80	8.11	31.89	20.55	1.61	2.50	<0.1	<0.01
WSR01	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	8:36:00 AM	8.86	8.09	31.92	20.57	1.54	2.50	<0.1	<0.01
WSR01	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	8:36:00 AM	8.80	8.05	31.92	20.59	1.54	3.00	<0.1	<0.01
WSR01	8/03/2025	Cloudy	Mid-Flood	Moderate	В	8	8:37:00 AM	8.86	8.11	31.90	20.59	1.61	2.50	<0.1	<0.01
WSR01	8/03/2025	Cloudy	Mid-Flood	Moderate	В	8	8:37:00 AM	8.93	8.06	31.95	20.56	1.54	4.00	<0.1	<0.01
WSR02	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:56:00 AM	9.01	8.12	31.96	20.47	1.61	3.00	<0.1	<0.01
WSR02	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:56:00 AM	9.05	8.13	31.98	20.59	1.58	2.50	<0.1	<0.01
WSR02	8/03/2025	Cloudy	Mid-Flood	Moderate	М	5	8:57:00 AM	8.96	8.12	31.95	20.55	1.51	2.50	<0.1	<0.01
WSR02	8/03/2025	Cloudy	Mid-Flood	Moderate	М	5	8:57:00 AM	9.01	8.15	32.02	20.60	1.52	2.50	<0.1	<0.01
WSR02	8/03/2025	Cloudy	Mid-Flood	Moderate	В	8	8:58:00 AM	9.03	8.16	31.99	20.52	1.55	2.50	<0.1	<0.01
WSR02	8/03/2025	Cloudy	Mid-Flood	Moderate	В	8	8:58:00 AM	9.08	8.11	31.99	20.47	1.47	3.00	<0.1	<0.01
WSR03	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:11:00 AM	8.95	8.17	32.14	20.44	1.74	2.50	<0.1	<0.01
WSR03	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:11:00 AM	8.95	8.21	32.16	20.40	1.79	3.00	<0.1	<0.01
WSR03	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:12:00 AM	8.97	8.17	32.14	20.53	1.73	2.50	<0.1	<0.01
WSR03	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:12:00 AM	9.00	8.18	32.18	20.48	1.73	3.00	<0.1	<0.01
WSR03	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:13:00 AM	9.04	8.19	32.16	20.43	1.78	5.00	<0.1	<0.01
WSR03	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:13:00 AM	9.04	8.18	32.18	20.45	1.75	2.50	<0.1	<0.01
WSR04	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:27:00 AM	8.61	8.16	31.81	20.47	1.65	4.00	<0.1	<0.01
WSR04	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:27:00 AM	8.61	8.12	31.83	20.49	1.57	3.00	<0.1	<0.01
WSR04	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:28:00 AM	8.61	8.11	31.85	20.48	1.58	3.00	<0.1	<0.01
WSR04	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:28:00 AM	8.71	8.13	31.83	20.50	1.59	2.50	<0.1	<0.01
WSR04	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:29:00 AM	8.69	8.13	31.86	20.49	1.64	2.50	<0.1	<0.01
WSR04	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:29:00 AM	8.74	8.12	31.83	20.46	1.58	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR16	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:51:00 AM	8.33	8.29	31.37	20.51	1.53	4.00	<0.1	<0.01
WSR16	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:51:00 AM	8.29	8.29	31.35	20.55	1.47	2.50	<0.1	<0.01
WSR16	8/03/2025	Cloudy	Mid-Flood	Moderate	M	8	10:52:00 AM	8.31	8.30	31.35	20.53	1.53	2.50	<0.1	<0.01
WSR16	8/03/2025	Cloudy	Mid-Flood	Moderate	М	8	10:52:00 AM	8.24	8.25	31.37	20.49	1.55	4.00	<0.1	<0.01
WSR16	8/03/2025	Cloudy	Mid-Flood	Moderate	В	14	10:53:00 AM	8.28	8.25	31.31	20.53	1.52	3.00	<0.1	<0.01
WSR16	8/03/2025	Cloudy	Mid-Flood	Moderate	В	14	10:53:00 AM	8.27	8.30	31.36	20.52	1.53	2.50	<0.1	<0.01
WSR33	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:42:00 AM	8.48	8.20	31.93	20.34	1.78	3.00	<0.1	<0.01
WSR33	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:42:00 AM	8.47	8.19	31.98	20.25	1.78	2.50	<0.1	<0.01
WSR33	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:43:00 AM	8.43	8.23	31.89	20.31	1.76	2.50	<0.1	<0.01
WSR33	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	9:43:00 AM	8.43	8.20	31.98	20.24	1.78	2.50	<0.1	<0.01
WSR33	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:44:00 AM	8.51	8.23	31.96	20.28	1.77	5.00	<0.1	<0.01
WSR33	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:44:00 AM	8.41	8.24	31.95	20.30	1.79	3.00	<0.1	<0.01
WSR36	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:59:00 AM	9.30	7.95	32.24	20.47	1.82	3.00	<0.1	<0.01
WSR36	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:59:00 AM	9.33	8.01	32.26	20.54	1.84	2.50	<0.1	<0.01
WSR36	8/03/2025	Cloudy	Mid-Flood	Moderate	М	3	10:00:00 AM	9.35	7.94	32.26	20.49	1.83	2.50	<0.1	<0.01
WSR36	8/03/2025	Cloudy	Mid-Flood	Moderate	М	3	10:00:00 AM	9.26	7.94	32.24	20.50	1.83	3.00	<0.1	<0.01
WSR36	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	10:00:00 AM	9.37	7.94	32.24	20.51	1.81	3.00	<0.1	<0.01
WSR36	8/03/2025	Cloudy	Mid-Flood	Moderate	В	6	10:00:00 AM	9.32	7.98	32.30	20.49	1.78	3.00	<0.1	<0.01
WSR37	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:14:00 AM	8.61	7.98	32.18	20.46	1.35	5.00	<0.1	<0.01
WSR37	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:14:00 AM	8.62	7.94	32.19	20.46	1.33	3.00	<0.1	<0.01
WSR37	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	10:15:00 AM	8.56	8.00	32.24	20.39	1.36	2.50	<0.1	<0.01
WSR37	8/03/2025	Cloudy	Mid-Flood	Moderate	М	4	10:15:00 AM	8.56	7.99	32.17	20.43	1.38	3.00	<0.1	<0.01
WSR37	8/03/2025	Cloudy	Mid-Flood	Moderate	В	8	10:16:00 AM	8.58	7.94	32.19	20.47	1.31	3.00	<0.1	<0.01
WSR37	8/03/2025	Cloudy	Mid-Flood	Moderate	В	8	10:16:00 AM	8.54	7.93	32.18	20.44	1.23	3.00	<0.1	<0.01
NF1	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:38:00 AM	8.16	8.11	31.40	20.32	1.30	3.00	<0.1	<0.01
NF1	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:38:00 AM	8.15	8.12	31.39	20.28	1.31	3.00	<0.1	<0.01
NF1	8/03/2025	Cloudy	Mid-Flood	Moderate	М	7	10:39:00 AM	8.12	8.16	31.37	20.26	1.30	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF1	8/03/2025	Cloudy	Mid-Flood	Moderate	М	7	10:39:00 AM	8.13	8.12	31.44	20.28	1.27	2.50	<0.1	<0.01
NF1	8/03/2025	Cloudy	Mid-Flood	Moderate	В	13	10:40:00 AM	8.23	8.11	31.40	20.39	1.26	4.00	<0.1	<0.01
NF1	8/03/2025	Cloudy	Mid-Flood	Moderate	В	13	10:40:00 AM	8.24	8.16	31.41	20.36	1.26	2.50	<0.1	<0.01
NF2	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:30:00 AM	9.44	8.14	31.68	20.65	1.79	2.50	<0.1	<0.01
NF2	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:30:00 AM	9.38	8.13	31.63	20.64	1.78	4.00	<0.1	<0.01
NF2	8/03/2025	Cloudy	Mid-Flood	Moderate	М	5	10:31:00 AM	9.47	8.13	31.72	20.59	1.76	2.50	<0.1	<0.01
NF2	8/03/2025	Cloudy	Mid-Flood	Moderate	М	5	10:31:00 AM	9.40	8.13	31.64	20.63	1.82	2.50	<0.1	<0.01
NF2	8/03/2025	Cloudy	Mid-Flood	Moderate	В	9	10:32:00 AM	9.36	8.15	31.67	20.58	1.75	3.00	<0.1	<0.01
NF2	8/03/2025	Cloudy	Mid-Flood	Moderate	В	9	10:32:00 AM	9.43	8.13	31.67	20.58	1.76	2.50	<0.1	<0.01
NF3	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:23:00 AM	8.34	8.08	32.12	20.27	1.37	2.50	<0.1	<0.01
NF3	8/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:23:00 AM	8.45	8.13	32.10	20.25	1.34	2.50	<0.1	<0.01
NF3	8/03/2025	Cloudy	Mid-Flood	Moderate	М	6	10:24:00 AM	8.39	8.15	32.09	20.35	1.32	2.50	<0.1	<0.01
NF3	8/03/2025	Cloudy	Mid-Flood	Moderate	М	6	10:24:00 AM	8.44	8.13	32.11	20.30	1.35	2.50	<0.1	<0.01
NF3	8/03/2025	Cloudy	Mid-Flood	Moderate	В	11	10:25:00 AM	8.37	8.12	32.13	20.26	1.30	4.00	<0.1	<0.01
NF3	8/03/2025	Cloudy	Mid-Flood	Moderate	В	11	10:25:00 AM	8.39	8.15	32.11	20.32	1.33	3.00	<0.1	<0.01
CE	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	9:40:00 AM	8.91	8.12	32.39	20.86	2.63	4.00	<0.1	<0.01
CE	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	9:40:00 AM	8.92	8.10	32.27	20.85	2.61	2.50	<0.1	<0.01
CE	11/03/2025	Sunny	Mid-Ebb	Moderate	М	11	9:41:00 AM	8.83	8.10	32.24	20.89	2.64	2.50	<0.1	<0.01
CE	11/03/2025	Sunny	Mid-Ebb	Moderate	М	11	9:41:00 AM	8.82	8.15	32.30	20.88	2.67	2.50	<0.1	<0.01
CE	11/03/2025	Sunny	Mid-Ebb	Moderate	В	21	9:42:00 AM	8.86	8.12	32.36	20.82	2.59	2.50	<0.1	<0.01
CE	11/03/2025	Sunny	Mid-Ebb	Moderate	В	21	9:42:00 AM	8.84	8.11	32.38	20.82	2.55	4.00	<0.1	<0.01
CF	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	12:52:00 PM	9.04	8.12	31.59	20.71	2.35	2.50	<0.1	<0.01
CF	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	12:52:00 PM	9.05	8.08	31.62	20.68	2.39	2.50	<0.1	<0.01
CF	11/03/2025	Sunny	Mid-Ebb	Moderate	М	10	12:53:00 PM	9.12	8.09	31.58	20.71	2.41	3.00	<0.1	<0.01
CF	11/03/2025	Sunny	Mid-Ebb	Moderate	М	10	12:53:00 PM	9.03	8.10	31.71	20.66	2.35	2.50	<0.1	<0.01
CF	11/03/2025	Sunny	Mid-Ebb	Moderate	В	19	12:54:00 PM	9.14	8.11	31.67	20.68	2.28	4.00	<0.1	<0.01
CF	11/03/2025	Sunny	Mid-Ebb	Moderate	В	19	12:54:00 PM	9.03	8.12	31.72	20.69	2.25	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR01	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	12:27:00 PM	8.42	8.22	31.98	20.58	1.96	2.50	<0.1	<0.01
WSR01	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	12:27:00 PM	8.34	8.18	32.10	20.48	2.05	2.50	<0.1	<0.01
WSR01	11/03/2025	Sunny	Mid-Ebb	Moderate	M	4	12:28:00 PM	8.31	8.20	32.07	20.49	2.01	2.50	<0.1	<0.01
WSR01	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	12:28:00 PM	8.33	8.22	32.05	20.54	2.07	2.50	<0.1	<0.01
WSR01	11/03/2025	Sunny	Mid-Ebb	Moderate	В	7	12:29:00 PM	8.45	8.20	32.03	20.58	1.97	2.50	<0.1	<0.01
WSR01	11/03/2025	Sunny	Mid-Ebb	Moderate	В	7	12:29:00 PM	8.33	8.22	32.10	20.52	1.98	2.50	<0.1	<0.01
WSR02	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	12:06:00 PM	8.96	8.05	31.68	20.38	1.67	3.00	<0.1	<0.01
WSR02	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	12:06:00 PM	8.96	8.06	31.70	20.40	1.66	2.50	<0.1	<0.01
WSR02	11/03/2025	Sunny	Mid-Ebb	Moderate	М	5	12:07:00 PM	9.13	8.04	31.74	20.43	1.64	2.50	<0.1	<0.01
WSR02	11/03/2025	Sunny	Mid-Ebb	Moderate	М	5	12:07:00 PM	9.08	8.03	31.74	20.35	1.72	2.50	<0.1	<0.01
WSR02	11/03/2025	Sunny	Mid-Ebb	Moderate	В	9	12:08:00 PM	9.02	8.03	31.73	20.35	1.73	2.50	<0.1	<0.01
WSR02	11/03/2025	Sunny	Mid-Ebb	Moderate	В	9	12:08:00 PM	8.98	8.07	31.66	20.38	1.75	5.00	<0.1	<0.01
WSR03	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:50:00 AM	9.29	8.11	31.78	20.81	1.68	2.50	<0.1	<0.01
WSR03	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:50:00 AM	9.33	8.10	31.83	20.73	1.74	3.00	<0.1	<0.01
WSR03	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	11:51:00 AM	9.32	8.10	31.79	20.79	1.65	2.50	<0.1	<0.01
WSR03	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	11:51:00 AM	9.33	8.12	31.69	20.80	1.61	3.00	<0.1	<0.01
WSR03	11/03/2025	Sunny	Mid-Ebb	Moderate	В	7	11:52:00 AM	9.27	8.12	31.80	20.76	1.61	3.00	<0.1	<0.01
WSR03	11/03/2025	Sunny	Mid-Ebb	Moderate	В	7	11:52:00 AM	9.33	8.13	31.74	20.75	1.64	2.50	<0.1	<0.01
WSR04	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:36:00 AM	8.86	8.13	31.82	20.61	1.66	2.50	<0.1	<0.01
WSR04	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:36:00 AM	8.85	8.14	31.93	20.60	1.72	2.50	<0.1	<0.01
WSR04	11/03/2025	Sunny	Mid-Ebb	Moderate	М	3	11:37:00 AM	8.92	8.13	31.88	20.62	1.74	5.00	<0.1	<0.01
WSR04	11/03/2025	Sunny	Mid-Ebb	Moderate	М	3	11:37:00 AM	8.95	8.14	31.95	20.53	1.69	3.00	<0.1	<0.01
WSR04	11/03/2025	Sunny	Mid-Ebb	Moderate	В	6	11:38:00 AM	8.82	8.16	31.81	20.59	1.67	3.00	<0.1	<0.01
WSR04	11/03/2025	Sunny	Mid-Ebb	Moderate	В	6	11:38:00 AM	8.96	8.15	31.93	20.51	1.73	3.00	<0.1	<0.01
WSR16	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:03:00 AM	8.83	8.06	32.68	20.70	1.88	4.00	<0.1	<0.01
WSR16	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:03:00 AM	8.99	8.08	32.62	20.67	1.93	2.50	<0.1	<0.01
WSR16	11/03/2025	Sunny	Mid-Ebb	Moderate	M	8	10:04:00 AM	8.97	8.05	32.59	20.65	1.83	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR16	11/03/2025	Sunny	Mid-Ebb	Moderate	M	8	10:04:00 AM	8.85	8.09	32.64	20.71	1.82	3.00	<0.1	<0.01
WSR16	11/03/2025	Sunny	Mid-Ebb	Moderate	В	15	10:05:00 AM	8.94	8.08	32.59	20.74	1.88	2.50	<0.1	<0.01
WSR16	11/03/2025	Sunny	Mid-Ebb	Moderate	В	15	10:05:00 AM	8.94	8.10	32.65	20.66	1.83	3.00	<0.1	<0.01
WSR33	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:20:00 AM	9.42	8.03	31.92	20.34	1.93	2.50	<0.1	<0.01
WSR33	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:20:00 AM	9.28	8.02	31.93	20.39	1.92	3.00	<0.1	<0.01
WSR33	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	11:21:00 AM	9.42	8.04	31.95	20.38	1.95	3.00	<0.1	<0.01
WSR33	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	11:21:00 AM	9.36	8.04	31.94	20.40	1.99	2.50	<0.1	<0.01
WSR33	11/03/2025	Sunny	Mid-Ebb	Moderate	В	6	11:22:00 AM	9.25	8.02	31.84	20.36	2.01	4.00	<0.1	<0.01
WSR33	11/03/2025	Sunny	Mid-Ebb	Moderate	В	6	11:22:00 AM	9.30	8.00	31.96	20.37	1.99	2.50	<0.1	<0.01
WSR36	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:06:00 AM	8.75	8.18	32.15	20.85	1.63	2.50	<0.1	<0.01
WSR36	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	11:06:00 AM	8.88	8.18	32.04	20.87	1.61	2.50	<0.1	<0.01
WSR36	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	11:07:00 AM	8.84	8.14	32.17	20.85	1.59	2.50	<0.1	<0.01
WSR36	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	11:07:00 AM	8.88	8.16	32.09	20.83	1.69	3.00	<0.1	<0.01
WSR36	11/03/2025	Sunny	Mid-Ebb	Moderate	В	6	11:07:00 AM	8.74	8.17	32.13	20.92	1.62	4.00	<0.1	<0.01
WSR36	11/03/2025	Sunny	Mid-Ebb	Moderate	В	6	11:07:00 AM	8.74	8.15	32.21	20.83	1.66	2.50	<0.1	<0.01
WSR37	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:58:00 AM	8.75	8.01	31.08	20.60	1.58	2.50	<0.1	<0.01
WSR37	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:58:00 AM	8.84	8.03	31.06	20.58	1.79	2.50	<0.1	<0.01
WSR37	11/03/2025	Sunny	Mid-Ebb	Moderate	M	4	10:59:00 AM	8.90	8.04	30.95	20.54	1.78	3.00	<0.1	<0.01
WSR37	11/03/2025	Sunny	Mid-Ebb	Moderate	М	4	10:59:00 AM	8.77	8.01	30.97	20.61	1.68	3.00	<0.1	<0.01
WSR37	11/03/2025	Sunny	Mid-Ebb	Moderate	В	7	11:00:00 AM	8.83	8.04	31.02	20.56	1.56	2.50	<0.1	<0.01
WSR37	11/03/2025	Sunny	Mid-Ebb	Moderate	В	7	11:00:00 AM	8.87	8.03	30.95	20.64	1.55	3.00	<0.1	<0.01
NF1	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:25:00 AM	8.47	8.12	31.91	20.33	1.64	2.50	<0.1	<0.01
NF1	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:25:00 AM	8.57	8.14	31.82	20.36	1.68	3.00	<0.1	<0.01
NF1	11/03/2025	Sunny	Mid-Ebb	Moderate	М	7	10:26:00 AM	8.48	8.17	31.98	20.36	1.62	3.00	<0.1	<0.01
NF1	11/03/2025	Sunny	Mid-Ebb	Moderate	M	7	10:26:00 AM	8.57	8.12	31.85	20.42	1.53	2.50	<0.1	<0.01
NF1	11/03/2025	Sunny	Mid-Ebb	Moderate	В	12	10:27:00 AM	8.64	8.14	31.88	20.35	1.64	2.50	<0.1	<0.01
NF1	11/03/2025	Sunny	Mid-Ebb	Moderate	В	12	10:27:00 AM	8.53	8.16	31.94	20.33	1.66	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF2	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:40:00 AM	8.61	8.12	31.82	20.60	2.09	2.50	<0.1	<0.01
NF2	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:40:00 AM	8.67	8.14	31.76	20.61	2.05	2.50	<0.1	<0.01
NF2	11/03/2025	Sunny	Mid-Ebb	Moderate	М	5	10:41:00 AM	8.60	8.12	31.76	20.65	2.07	2.50	<0.1	<0.01
NF2	11/03/2025	Sunny	Mid-Ebb	Moderate	М	5	10:41:00 AM	8.61	8.11	31.67	20.64	2.02	3.00	<0.1	<0.01
NF2	11/03/2025	Sunny	Mid-Ebb	Moderate	В	10	10:42:00 AM	8.65	8.15	31.74	20.63	2.05	2.50	<0.1	<0.01
NF2	11/03/2025	Sunny	Mid-Ebb	Moderate	В	10	10:42:00 AM	8.52	8.10	31.81	20.60	1.98	2.50	<0.1	<0.01
NF3	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:49:00 AM	8.48	8.00	32.35	20.47	1.52	3.00	<0.1	<0.01
NF3	11/03/2025	Sunny	Mid-Ebb	Moderate	S	1	10:49:00 AM	8.39	8.00	32.28	20.56	1.58	3.00	<0.1	<0.01
NF3	11/03/2025	Sunny	Mid-Ebb	Moderate	М	6	10:50:00 AM	8.38	7.98	32.33	20.46	1.60	2.50	<0.1	<0.01
NF3	11/03/2025	Sunny	Mid-Ebb	Moderate	М	6	10:50:00 AM	8.45	7.98	32.36	20.57	1.56	2.50	<0.1	<0.01
NF3	11/03/2025	Sunny	Mid-Ebb	Moderate	В	11	10:51:00 AM	8.40	8.02	32.34	20.46	1.55	3.00	<0.1	<0.01
NF3	11/03/2025	Sunny	Mid-Ebb	Moderate	В	11	10:51:00 AM	8.49	8.02	32.29	20.53	1.60	3.00	<0.1	<0.01
CE	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:22:00 AM	8.73	8.27	31.87	20.84	2.52	3.00	<0.1	<0.01
CE	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:22:00 AM	8.73	8.24	31.88	20.86	2.53	2.50	<0.1	<0.01
CE	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	11	10:23:00 AM	8.86	8.24	31.82	20.91	2.42	2.50	<0.1	<0.01
CE	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	11	10:23:00 AM	8.67	8.26	31.84	20.82	2.44	3.00	<0.1	<0.01
CE	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	21	10:24:00 AM	8.87	8.27	31.72	20.86	2.44	2.50	<0.1	<0.01
CE	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	21	10:24:00 AM	8.80	8.24	31.73	20.81	2.49	2.50	<0.1	<0.01
CF	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:29:00 PM	9.28	8.15	31.89	20.66	2.23	2.50	<0.1	<0.01
CF	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:29:00 PM	9.21	8.16	31.80	20.61	2.31	3.00	<0.1	<0.01
CF	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	11	1:30:00 PM	9.18	8.12	31.98	20.68	2.28	2.50	<0.1	<0.01
CF	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	11	1:30:00 PM	9.16	8.13	31.87	20.65	2.19	2.50	<0.1	<0.01
CF	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	20	1:31:00 PM	9.33	8.13	31.83	20.67	2.31	2.50	<0.1	<0.01
CF	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	20	1:31:00 PM	9.20	8.14	31.84	20.62	2.28	2.50	<0.1	<0.01
WSR01	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:05:00 PM	8.42	8.09	32.40	20.60	2.01	2.50	<0.1	<0.01
WSR01	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:05:00 PM	8.52	8.09	32.26	20.59	2.07	2.50	<0.1	<0.01
WSR01	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	1:06:00 PM	8.48	8.09	32.35	20.58	1.99	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR01	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	1:06:00 PM	8.42	8.12	32.34	20.64	2.04	6.00	<0.1	<0.01
WSR01	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	1:07:00 PM	8.54	8.14	32.35	20.57	2.00	3.00	<0.1	<0.01
WSR01	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	1:07:00 PM	8.53	8.14	32.34	20.55	2.06	2.50	<0.1	<0.01
WSR02	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:46:00 PM	8.52	8.15	31.25	20.90	1.98	2.50	<0.1	<0.01
WSR02	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:46:00 PM	8.49	8.19	31.29	20.86	2.01	2.50	<0.1	<0.01
WSR02	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	12:47:00 PM	8.35	8.20	31.34	20.99	1.97	2.50	<0.1	<0.01
WSR02	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	12:47:00 PM	8.49	8.16	31.29	20.96	1.92	2.50	<0.1	<0.01
WSR02	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	12:48:00 PM	8.38	8.16	31.19	20.86	1.96	2.50	<0.1	<0.01
WSR02	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	12:48:00 PM	8.33	8.18	31.18	20.99	1.91	2.50	<0.1	<0.01
WSR03	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:30:00 PM	8.53	8.14	31.63	20.67	1.51	5.00	<0.1	<0.01
WSR03	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:30:00 PM	8.45	8.11	31.57	20.67	1.46	2.50	<0.1	<0.01
WSR03	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	12:31:00 PM	8.41	8.15	31.61	20.72	1.49	2.50	<0.1	<0.01
WSR03	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	12:31:00 PM	8.54	8.11	31.52	20.68	1.55	2.50	<0.1	<0.01
WSR03	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	7	12:32:00 PM	8.46	8.12	31.59	20.70	1.46	2.50	<0.1	<0.01
WSR03	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	7	12:32:00 PM	8.42	8.15	31.60	20.70	1.49	2.50	<0.1	<0.01
WSR04	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:18:00 PM	9.17	8.19	31.66	20.85	1.61	2.50	<0.1	<0.01
WSR04	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:18:00 PM	9.27	8.21	31.67	20.77	1.64	3.00	<0.1	<0.01
WSR04	13/03/2025	Cloudy	Mid-Ebb	Moderate	M	3	12:19:00 PM	9.12	8.20	31.60	20.83	1.71	2.50	<0.1	<0.01
WSR04	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	3	12:19:00 PM	9.19	8.22	31.62	20.81	1.68	2.50	<0.1	<0.01
WSR04	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	12:20:00 PM	9.18	8.22	31.62	20.79	1.64	2.50	<0.1	<0.01
WSR04	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	12:20:00 PM	9.13	8.20	31.62	20.74	1.69	2.50	<0.1	<0.01
WSR16	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:45:00 AM	8.90	8.24	32.15	20.75	1.90	2.50	<0.1	<0.01
WSR16	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:45:00 AM	8.88	8.22	32.20	20.76	1.89	2.50	<0.1	<0.01
WSR16	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	8	10:46:00 AM	8.89	8.27	32.21	20.77	1.89	2.50	<0.1	<0.01
WSR16	13/03/2025	Cloudy	Mid-Ebb	Moderate	M	8	10:46:00 AM	8.91	8.24	32.11	20.83	1.95	3.00	<0.1	<0.01
WSR16	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	16	10:47:00 AM	9.05	8.24	32.16	20.77	1.94	2.50	<0.1	<0.01
WSR16	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	16	10:47:00 AM	8.96	8.26	32.06	20.69	1.85	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR33	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:01:00 PM	8.18	8.24	31.17	20.91	1.81	2.50	<0.1	<0.01
WSR33	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:01:00 PM	8.18	8.27	31.12	20.84	1.73	2.50	<0.1	<0.01
WSR33	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	12:02:00 PM	8.18	8.26	31.10	20.85	1.89	4.00	<0.1	<0.01
WSR33	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	12:02:00 PM	8.21	8.25	31.03	20.82	1.75	2.50	<0.1	<0.01
WSR33	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	12:03:00 PM	8.10	8.26	31.01	20.79	1.86	2.50	<0.1	<0.01
WSR33	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	12:03:00 PM	8.25	8.23	31.20	20.81	1.82	2.50	<0.1	<0.01
WSR36	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:47:00 AM	8.78	8.09	32.33	20.83	1.75	2.50	<0.1	<0.01
WSR36	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:47:00 AM	8.73	8.06	32.33	20.96	1.73	2.50	<0.1	<0.01
WSR36	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	11:48:00 AM	8.66	8.08	32.28	20.85	1.67	3.00	<0.1	<0.01
WSR36	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	11:48:00 AM	8.65	8.10	32.34	20.87	1.63	3.00	<0.1	<0.01
WSR36	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	11:48:00 AM	8.66	8.09	32.24	20.91	1.48	2.50	<0.1	<0.01
WSR36	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	11:48:00 AM	8.67	8.06	32.35	20.94	1.47	5.00	<0.1	<0.01
WSR37	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:39:00 AM	8.83	8.29	32.36	20.81	1.71	2.50	<0.1	<0.01
WSR37	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:39:00 AM	8.83	8.34	32.38	20.75	1.73	2.50	<0.1	<0.01
WSR37	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	11:40:00 AM	8.75	8.33	32.30	20.81	1.66	3.00	<0.1	<0.01
WSR37	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	11:40:00 AM	8.77	8.32	32.28	20.79	1.65	2.50	<0.1	<0.01
WSR37	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	11:41:00 AM	8.84	8.34	32.38	20.83	1.72	5.00	<0.1	<0.01
WSR37	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	11:41:00 AM	8.70	8.30	32.39	20.77	1.75	3.00	<0.1	<0.01
NF1	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:07:00 AM	9.10	8.08	31.10	20.86	1.54	2.50	<0.1	<0.01
NF1	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:07:00 AM	9.10	8.11	31.10	20.81	1.62	2.50	<0.1	<0.01
NF1	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	7	11:08:00 AM	9.10	8.08	31.17	20.85	1.60	2.50	<0.1	<0.01
NF1	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	7	11:08:00 AM	9.21	8.11	31.17	20.78	1.50	2.50	<0.1	<0.01
NF1	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	13	11:09:00 AM	9.19	8.13	31.10	20.73	1.56	2.50	<0.1	<0.01
NF1	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	13	11:09:00 AM	9.18	8.13	31.12	20.75	1.52	2.50	<0.1	<0.01
NF2	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:22:00 AM	8.96	8.21	32.43	20.64	1.65	2.50	<0.1	<0.01
NF2	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:22:00 AM	8.82	8.23	32.38	20.62	1.68	2.50	<0.1	<0.01
NF2	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	11:23:00 AM	8.94	8.21	32.49	20.69	1.58	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF2	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	11:23:00 AM	8.85	8.19	32.48	20.68	1.53	2.50	<0.1	<0.01
NF2	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	9	11:24:00 AM	8.83	8.24	32.40	20.61	1.54	3.00	<0.1	<0.01
NF2	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	9	11:24:00 AM	9.01	8.22	32.43	20.57	1.51	2.50	<0.1	<0.01
NF3	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:31:00 AM	8.02	8.09	31.39	20.51	1.96	3.00	<0.1	<0.01
NF3	13/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:31:00 AM	8.13	8.10	31.27	20.58	1.95	2.50	<0.1	<0.01
NF3	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	6	11:32:00 AM	8.11	8.09	31.31	20.64	1.99	2.50	<0.1	<0.01
NF3	13/03/2025	Cloudy	Mid-Ebb	Moderate	М	6	11:32:00 AM	8.09	8.12	31.33	20.62	1.98	2.50	<0.1	<0.01
NF3	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	12	11:33:00 AM	8.16	8.14	31.33	20.55	1.88	3.00	<0.1	<0.01
NF3	13/03/2025	Cloudy	Mid-Ebb	Moderate	В	12	11:33:00 AM	8.03	8.10	31.27	20.50	1.92	2.50	<0.1	<0.01
CE	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:19:00 AM	9.06	8.13	32.60	21.25	2.66	2.50	<0.1	<0.01
CE	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:19:00 AM	9.25	8.11	32.67	21.21	2.54	3.00	<0.1	<0.01
CE	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	12	11:20:00 AM	9.10	8.11	32.67	21.29	2.57	4.00	<0.1	<0.01
CE	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	12	11:20:00 AM	9.10	8.13	32.65	21.31	2.43	2.50	<0.1	<0.01
CE	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	23	11:21:00 AM	9.04	8.10	32.62	21.31	2.48	2.50	<0.1	<0.01
CE	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	23	11:21:00 AM	9.19	8.11	32.68	21.23	2.44	3.00	<0.1	<0.01
CF	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	2:32:00 PM	7.93	8.22	32.36	21.05	2.27	3.00	<0.1	<0.01
CF	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	2:32:00 PM	7.94	8.25	32.36	21.11	2.14	2.50	<0.1	<0.01
CF	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	10	2:33:00 PM	7.89	8.24	32.41	21.08	2.19	2.50	<0.1	<0.01
CF	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	10	2:33:00 PM	8.07	8.27	32.39	21.15	2.13	3.00	<0.1	<0.01
CF	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	19	2:34:00 PM	7.98	8.25	32.36	21.08	2.15	2.50	<0.1	<0.01
CF	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	19	2:34:00 PM	7.97	8.24	32.44	21.12	2.18	4.00	<0.1	<0.01
WSR01	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	2:09:00 PM	8.95	8.31	31.79	21.26	1.98	3.00	<0.1	<0.01
WSR01	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	2:09:00 PM	8.87	8.31	31.81	21.21	1.96	3.00	<0.1	<0.01
WSR01	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	2:10:00 PM	9.05	8.30	31.84	21.26	2.05	3.00	<0.1	<0.01
WSR01	15/03/2025	Cloudy	Mid-Ebb	Moderate	M	4	2:10:00 PM	8.89	8.29	31.84	21.17	2.02	4.00	<0.1	<0.01
WSR01	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	2:11:00 PM	9.01	8.29	31.77	21.24	1.99	4.00	<0.1	<0.01
WSR01	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	2:11:00 PM	9.10	8.31	31.84	21.22	1.95	5.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR02	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:50:00 PM	9.01	8.23	32.54	21.06	1.71	2.50	<0.1	<0.01
WSR02	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:50:00 PM	8.92	8.25	32.62	20.99	1.69	2.50	<0.1	<0.01
WSR02	15/03/2025	Cloudy	Mid-Ebb	Moderate	M	5	1:51:00 PM	8.93	8.24	32.52	20.98	1.77	2.50	<0.1	<0.01
WSR02	15/03/2025	Cloudy	Mid-Ebb	Moderate	M	5	1:51:00 PM	8.95	8.22	32.52	20.98	1.74	3.00	<0.1	<0.01
WSR02	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	1:52:00 PM	9.04	8.28	32.61	21.09	1.65	2.50	<0.1	<0.01
WSR02	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	8	1:52:00 PM	9.03	8.27	32.62	21.06	1.67	2.50	<0.1	<0.01
WSR03	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:33:00 PM	8.70	8.12	32.51	21.13	2.11	2.50	<0.1	<0.01
WSR03	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:33:00 PM	8.59	8.11	32.47	21.06	2.09	2.50	<0.1	<0.01
WSR03	15/03/2025	Cloudy	Mid-Ebb	Moderate	M	4	1:34:00 PM	8.84	8.13	32.51	21.14	2.04	3.00	<0.1	<0.01
WSR03	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	1:34:00 PM	8.75	8.15	32.51	21.17	2.07	3.00	<0.1	<0.01
WSR03	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	1:35:00 PM	8.74	8.10	32.47	21.18	2.14	2.50	<0.1	<0.01
WSR03	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	1:35:00 PM	8.75	8.12	32.51	21.17	2.04	2.50	<0.1	<0.01
WSR04	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:20:00 PM	8.69	8.22	32.02	21.29	1.91	2.50	<0.1	<0.01
WSR04	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:20:00 PM	8.70	8.22	32.05	21.22	1.89	2.50	<0.1	<0.01
WSR04	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	1:21:00 PM	8.59	8.20	32.13	21.18	1.89	2.50	<0.1	<0.01
WSR04	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	1:21:00 PM	8.80	8.26	32.02	21.26	1.83	2.50	<0.1	<0.01
WSR04	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	1:22:00 PM	8.68	8.22	32.12	21.29	1.89	2.50	<0.1	<0.01
WSR04	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	1:22:00 PM	8.56	8.22	32.11	21.24	1.87	4.00	<0.1	<0.01
WSR16	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:42:00 AM	9.50	8.21	32.52	21.31	2.04	2.50	<0.1	<0.01
WSR16	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:42:00 AM	9.47	8.24	32.53	21.22	1.94	2.50	<0.1	<0.01
WSR16	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	8	11:43:00 AM	9.49	8.26	32.46	21.22	1.97	3.00	<0.1	<0.01
WSR16	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	8	11:43:00 AM	9.61	8.24	32.46	21.24	2.06	2.50	<0.1	<0.01
WSR16	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	15	11:44:00 AM	9.41	8.21	32.43	21.31	2.01	2.50	<0.1	<0.01
WSR16	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	15	11:44:00 AM	9.65	8.27	32.49	21.23	1.96	2.50	<0.1	<0.01
WSR33	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:03:00 PM	8.05	8.26	32.51	21.20	1.74	2.50	<0.1	<0.01
WSR33	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:03:00 PM	8.18	8.26	32.57	21.23	1.83	2.50	<0.1	<0.01
WSR33	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	1:04:00 PM	8.02	8.22	32.49	21.28	1.77	4.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR33	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	1:04:00 PM	8.14	8.26	32.57	21.24	1.69	2.50	<0.1	<0.01
WSR33	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	7	1:05:00 PM	8.12	8.23	32.57	21.27	1.79	2.50	<0.1	<0.01
WSR33	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	7	1:05:00 PM	8.15	8.24	32.55	21.18	1.65	2.50	<0.1	<0.01
WSR36	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:49:00 PM	8.69	8.20	31.28	21.09	1.92	3.00	<0.1	<0.01
WSR36	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:49:00 PM	8.75	8.19	31.24	20.98	1.96	2.50	<0.1	<0.01
WSR36	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	3	12:50:00 PM	8.71	8.21	31.23	21.07	1.98	5.00	<0.1	<0.01
WSR36	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	3	12:50:00 PM	8.76	8.17	31.20	20.97	1.90	2.50	<0.1	<0.01
WSR36	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	12:50:00 PM	8.64	8.17	31.17	21.09	2.01	3.00	<0.1	<0.01
WSR36	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	6	12:50:00 PM	8.65	8.16	31.21	20.99	2.03	5.00	<0.1	<0.01
WSR37	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:41:00 PM	9.09	8.17	32.61	21.03	1.63	2.50	<0.1	<0.01
WSR37	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:41:00 PM	9.03	8.20	32.56	21.05	1.75	3.00	<0.1	<0.01
WSR37	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	12:42:00 PM	9.19	8.18	32.57	20.99	1.78	3.00	<0.1	<0.01
WSR37	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	4	12:42:00 PM	9.02	8.16	32.58	21.04	1.81	4.00	<0.1	<0.01
WSR37	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	7	12:43:00 PM	9.14	8.15	32.60	20.98	1.84	3.00	<0.1	<0.01
WSR37	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	7	12:43:00 PM	9.17	8.17	32.55	20.95	1.73	2.50	<0.1	<0.01
NF1	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:06:00 PM	8.58	8.21	31.49	21.03	1.55	2.50	<0.1	<0.01
NF1	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:06:00 PM	8.48	8.21	31.51	20.91	1.55	3.00	<0.1	<0.01
NF1	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	7	12:07:00 PM	8.60	8.21	31.52	20.89	1.55	2.50	<0.1	<0.01
NF1	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	7	12:07:00 PM	8.65	8.21	31.51	20.92	1.56	2.50	<0.1	<0.01
NF1	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	13	12:08:00 PM	8.72	8.18	31.52	21.00	1.47	4.00	<0.1	<0.01
NF1	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	13	12:08:00 PM	8.52	8.20	31.59	20.93	1.47	3.00	<0.1	<0.01
NF2	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:24:00 PM	8.47	8.16	31.74	20.93	1.65	4.00	<0.1	<0.01
NF2	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:24:00 PM	8.43	8.14	31.75	20.94	1.46	2.50	<0.1	<0.01
NF2	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	12:25:00 PM	8.51	8.15	31.74	20.90	1.69	2.50	<0.1	<0.01
NF2	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	5	12:25:00 PM	8.38	8.17	31.81	20.99	1.65	2.50	<0.1	<0.01
NF2	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	9	12:26:00 PM	8.45	8.16	31.85	20.96	1.69	4.00	<0.1	<0.01
NF2	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	9	12:26:00 PM	8.53	8.19	31.78	20.89	1.68	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF3	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:32:00 PM	8.60	8.29	32.14	21.11	1.91	2.50	<0.1	<0.01
NF3	15/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:32:00 PM	8.47	8.26	32.20	20.99	1.78	2.50	<0.1	<0.01
NF3	15/03/2025	Cloudy	Mid-Ebb	Moderate	M	6	12:33:00 PM	8.62	8.25	32.20	20.99	1.88	3.00	<0.1	<0.01
NF3	15/03/2025	Cloudy	Mid-Ebb	Moderate	М	6	12:33:00 PM	8.54	8.27	32.11	21.10	1.88	3.00	<0.1	<0.01
NF3	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	12	12:34:00 PM	8.48	8.24	32.20	21.08	1.81	3.00	<0.1	<0.01
NF3	15/03/2025	Cloudy	Mid-Ebb	Moderate	В	11.5	12:34:00 PM	8.44	8.26	32.13	21.07	1.81	3.00	<0.1	<0.01
CE	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	11:00:00 AM	8.29	8.24	31.72	21.32	2.21	2.50	<0.1	<0.01
CE	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	11:00:00 AM	8.33	8.25	31.69	21.3	2.28	3.00	<0.1	<0.01
CE	18/03/2025	Sunny	Mid-Flood	Moderate	М	11.1	11:01:00 AM	8.37	8.23	31.73	21.3	2.27	3.00	<0.1	<0.01
CE	18/03/2025	Sunny	Mid-Flood	Moderate	М	11.1	11:01:00 AM	8.31	8.22	31.78	21.29	2.29	3.00	<0.1	<0.01
CE	18/03/2025	Sunny	Mid-Flood	Moderate	В	21.2	11:02:00 AM	8.3	8.25	31.79	21.28	2.25	3.00	<0.1	<0.01
CE	18/03/2025	Sunny	Mid-Flood	Moderate	В	21.2	11:02:00 AM	8.43	8.21	31.74	21.34	2.19	4.00	<0.1	<0.01
CF	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:02:00 AM	8.52	8.28	32.07	20.93	2.47	2.50	<0.1	<0.01
CF	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:02:00 AM	8.53	8.24	32.06	20.99	2.48	4.00	<0.1	<0.01
CF	18/03/2025	Sunny	Mid-Flood	Moderate	М	9.55	8:03:00 AM	8.57	8.25	32.1	20.95	2.34	3.00	<0.1	<0.01
CF	18/03/2025	Sunny	Mid-Flood	Moderate	М	9.55	8:03:00 AM	8.43	8.27	32.15	20.98	2.31	3.00	<0.1	<0.01
CF	18/03/2025	Sunny	Mid-Flood	Moderate	В	18.1	8:04:00 AM	8.4	8.24	32.15	20.98	2.23	3.00	<0.1	<0.01
CF	18/03/2025	Sunny	Mid-Flood	Moderate	В	18.1	8:04:00 AM	8.6	8.29	32.05	20.99	2.39	3.00	<0.1	<0.01
WSR01	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:26:00 AM	9.28	8.28	31.57	21.02	1.73	3.00	<0.1	<0.01
WSR01	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:26:00 AM	9.06	8.26	31.56	21.05	1.69	3.00	<0.1	<0.01
WSR01	18/03/2025	Sunny	Mid-Flood	Moderate	М	4.65	8:27:00 AM	9.15	8.28	31.65	21.09	1.72	2.50	<0.1	<0.01
WSR01	18/03/2025	Sunny	Mid-Flood	Moderate	М	4.65	8:27:00 AM	9.21	8.25	31.63	21.07	1.71	2.50	<0.1	<0.01
WSR01	18/03/2025	Sunny	Mid-Flood	Moderate	В	8.3	8:28:00 AM	9.08	8.30	31.57	21.03	1.69	3.00	<0.1	<0.01
WSR01	18/03/2025	Sunny	Mid-Flood	Moderate	В	8.3	8:28:00 AM	9.1	8.25	31.58	21.03	1.65	4.00	<0.1	<0.01
WSR02	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:45:00 AM	8.44	8.18	32.61	21.39	1.71	2.50	<0.1	<0.01
WSR02	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	8:45:00 AM	8.6	8.19	32.6	21.42	1.66	2.50	<0.1	<0.01
WSR02	18/03/2025	Sunny	Mid-Flood	Moderate	М	4.7	8:46:00 AM	8.54	8.17	32.63	21.47	1.61	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR02	18/03/2025	Sunny	Mid-Flood	Moderate	М	4.7	8:46:00 AM	8.52	8.20	32.55	21.42	1.63	2.50	<0.1	<0.01
WSR02	18/03/2025	Sunny	Mid-Flood	Moderate	В	8.4	8:47:00 AM	8.47	8.18	32.54	21.48	1.68	2.50	<0.1	<0.01
WSR02	18/03/2025	Sunny	Mid-Flood	Moderate	В	8.4	8:47:00 AM	8.46	8.18	32.63	21.45	1.62	3.00	<0.1	<0.01
WSR03	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:00:00 AM	9.16	8.06	32.73	21.28	1.88	3.00	<0.1	<0.01
WSR03	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:00:00 AM	9.25	8.07	32.73	21.29	1.84	3.00	<0.1	<0.01
WSR03	18/03/2025	Sunny	Mid-Flood	Moderate	М	4.15	9:01:00 AM	9.23	8.11	32.72	21.24	1.84	2.50	<0.1	<0.01
WSR03	18/03/2025	Sunny	Mid-Flood	Moderate	М	4.15	9:01:00 AM	9.16	8.09	32.82	21.28	1.76	2.50	<0.1	<0.01
WSR03	18/03/2025	Sunny	Mid-Flood	Moderate	В	7.3	9:02:00 AM	9.19	8.11	32.76	21.28	1.88	4.00	<0.1	<0.01
WSR03	18/03/2025	Sunny	Mid-Flood	Moderate	В	7.3	9:02:00 AM	9.06	8.11	32.83	21.3	1.86	2.50	<0.1	<0.01
WSR04	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:16:00 AM	8.9	8.14	32.53	21.16	2.03	3.00	<0.1	<0.01
WSR04	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:16:00 AM	9.02	8.14	32.47	21.15	1.99	3.00	<0.1	<0.01
WSR04	18/03/2025	Sunny	Mid-Flood	Moderate	М	3.5	9:17:00 AM	8.91	8.16	32.49	21.13	1.95	3.00	<0.1	<0.01
WSR04	18/03/2025	Sunny	Mid-Flood	Moderate	М	3.5	9:17:00 AM	8.87	8.14	32.49	21.14	1.96	2.50	<0.1	<0.01
WSR04	18/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:18:00 AM	8.96	8.16	32.44	21.1	1.97	2.50	<0.1	<0.01
WSR04	18/03/2025	Sunny	Mid-Flood	Moderate	В	6	9:18:00 AM	8.9	8.14	32.5	21.15	1.89	3.00	<0.1	<0.01
WSR16	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:39:00 AM	8.39	8.07	32.58	21.35	1.74	3.00	<0.1	<0.01
WSR16	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:39:00 AM	8.31	8.05	32.58	21.33	1.75	3.00	<0.1	<0.01
WSR16	18/03/2025	Sunny	Mid-Flood	Moderate	М	8.2	10:40:00 AM	8.43	8.09	32.53	21.35	1.9	2.50	<0.1	<0.01
WSR16	18/03/2025	Sunny	Mid-Flood	Moderate	М	8.2	10:40:00 AM	8.45	8.06	32.57	21.38	1.84	4.00	<0.1	<0.01
WSR16	18/03/2025	Sunny	Mid-Flood	Moderate	В	15.4	10:41:00 AM	8.45	8.06	32.48	21.33	1.87	2.50	<0.1	<0.01
WSR16	18/03/2025	Sunny	Mid-Flood	Moderate	В	15.4	10:41:00 AM	8.45	8.04	32.53	21.38	1.93	4.00	<0.1	<0.01
WSR33	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:31:00 AM	8.25	8.03	32.9	21.42	1.8	2.50	<0.1	<0.01
WSR33	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:31:00 AM	8.24	8.02	32.85	21.43	1.71	2.50	<0.1	<0.01
WSR33	18/03/2025	Sunny	Mid-Flood	Moderate	М	3.55	9:32:00 AM	8.29	8.02	32.89	21.47	1.83	3.00	<0.1	<0.01
WSR33	18/03/2025	Sunny	Mid-Flood	Moderate	М	3.55	9:32:00 AM	8.31	8.06	32.83	21.44	1.76	4.00	<0.1	<0.01
WSR33	18/03/2025	Sunny	Mid-Flood	Moderate	В	6.1	9:33:00 AM	8.39	8.06	32.89	21.46	1.81	2.50	<0.1	<0.01
WSR33	18/03/2025	Sunny	Mid-Flood	Moderate	В	6.1	9:33:00 AM	8.25	8.04	32.85	21.47	1.75	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR36	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:46:00 AM	8.48	8.18	32.35	21.24	1.81	5.00	<0.1	<0.01
WSR36	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	9:46:00 AM	8.43	8.23	32.38	21.23	1.67	3.00	<0.1	<0.01
WSR36	18/03/2025	Sunny	Mid-Flood	Moderate	M	3.65	9:47:00 AM	8.42	8.23	32.28	21.23	1.84	3.00	<0.1	<0.01
WSR36	18/03/2025	Sunny	Mid-Flood	Moderate	М	3.65	9:47:00 AM	8.46	8.19	32.32	21.19	1.85	2.50	<0.1	<0.01
WSR36	18/03/2025	Sunny	Mid-Flood	Moderate	В	6.3	9:47:00 AM	8.4	8.21	32.3	21.24	1.67	2.50	<0.1	<0.01
WSR36	18/03/2025	Sunny	Mid-Flood	Moderate	В	6.3	9:47:00 AM	8.31	8.20	32.37	21.25	1.75	2.50	<0.1	<0.01
WSR37	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:01:00 AM	8.2	8.33	32.25	21.34	1.65	3.00	<0.1	<0.01
WSR37	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:01:00 AM	8.17	8.32	32.16	21.3	1.59	2.50	<0.1	<0.01
WSR37	18/03/2025	Sunny	Mid-Flood	Moderate	M	3.8	10:02:00 AM	8.23	8.28	32.24	21.37	1.65	4.00	<0.1	<0.01
WSR37	18/03/2025	Sunny	Mid-Flood	Moderate	М	3.8	10:02:00 AM	8.23	8.30	32.24	21.31	1.59	4.00	<0.1	<0.01
WSR37	18/03/2025	Sunny	Mid-Flood	Moderate	В	6.6	10:03:00 AM	8.19	8.32	32.19	21.28	1.65	4.00	<0.1	<0.01
WSR37	18/03/2025	Sunny	Mid-Flood	Moderate	В	6.6	10:03:00 AM	8.25	8.28	32.19	21.29	1.72	2.50	<0.1	<0.01
NF1	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:26:00 AM	8.91	8.22	32.58	21.14	1.69	2.50	<0.1	<0.01
NF1	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:26:00 AM	8.89	8.22	32.51	21.15	1.75	3.00	<0.1	<0.01
NF1	18/03/2025	Sunny	Mid-Flood	Moderate	M	6.9	10:27:00 AM	8.88	8.25	32.57	21.21	1.73	2.50	<0.1	<0.01
NF1	18/03/2025	Sunny	Mid-Flood	Moderate	М	6.9	10:27:00 AM	8.9	8.26	32.52	21.18	1.7	4.00	<0.1	<0.01
NF1	18/03/2025	Sunny	Mid-Flood	Moderate	В	12.8	10:28:00 AM	8.75	8.22	32.53	21.19	1.69	3.00	<0.1	<0.01
NF1	18/03/2025	Sunny	Mid-Flood	Moderate	В	12.8	10:28:00 AM	8.87	8.22	32.55	21.19	1.62	2.50	<0.1	<0.01
NF2	18/03/2025	Sunny	Mid-Flood	Moderate	s	1	10:18:00 AM	9.07	8.17	31.93	21.08	1.91	3.00	<0.1	<0.01
NF2	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:18:00 AM	9.08	8.16	31.99	21.09	1.95	4.00	<0.1	<0.01
NF2	18/03/2025	Sunny	Mid-Flood	Moderate	М	5.05	10:19:00 AM	9.09	8.18	31.95	21.07	1.97	3.00	<0.1	<0.01
NF2	18/03/2025	Sunny	Mid-Flood	Moderate	М	5.05	10:19:00 AM	9.13	8.19	32	21.06	1.94	3.00	<0.1	<0.01
NF2	18/03/2025	Sunny	Mid-Flood	Moderate	В	9.1	10:20:00 AM	9.15	8.20	31.93	21.09	1.93	4.00	<0.1	<0.01
NF2	18/03/2025	Sunny	Mid-Flood	Moderate	В	9.1	10:20:00 AM	9.12	8.20	31.93	21.13	1.96	3.00	<0.1	<0.01
NF3	18/03/2025	Sunny	Mid-Flood	Moderate	S	1	10:10:00 AM	9.41	8.13	33.01	21.08	1.66	2.50	<0.1	<0.01
NF3	18/03/2025	Sunny	Mid-Flood	Moderate	s	1	10:10:00 AM	9.37	8.17	32.97	21.01	1.64	4.00	<0.1	<0.01
NF3	18/03/2025	Sunny	Mid-Flood	Moderate	M	6.15	10:11:00 AM	9.23	8.13	33.05	21.1	1.63	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF3	18/03/2025	Sunny	Mid-Flood	Moderate	M	6.15	10:11:00 AM	9.34	8.17	33.04	21.08	1.69	3.00	<0.1	<0.01
NF3	18/03/2025	Sunny	Mid-Flood	Moderate	В	11.3	10:12:00 AM	9.36	8.17	33.07	21.06	1.69	3.00	<0.1	<0.01
NF3	18/03/2025	Sunny	Mid-Flood	Moderate	В	11.3	10:12:00 AM	9.42	8.18	33.07	21.06	1.61	3.00	<0.1	<0.01
CE	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:43:00 AM	9	8.03	32.17	21.19	2.23	3.00	<0.1	<0.01
CE	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:43:00 AM	9.1	8.06	32.23	21.17	2.28	2.50	<0.1	<0.01
CE	20/03/2025	Cloudy	Mid-Flood	Moderate	М	10.75	11:44:00 AM	9.19	8.03	32.19	21.16	2.35	5.00	<0.1	<0.01
CE	20/03/2025	Cloudy	Mid-Flood	Moderate	М	10.75	11:44:00 AM	9.18	8.04	32.12	21.19	2.36	3.00	<0.1	<0.01
CE	20/03/2025	Cloudy	Mid-Flood	Moderate	В	20.5	11:45:00 AM	9.01	8.05	32.1	21.22	2.27	3.00	<0.1	<0.01
CE	20/03/2025	Cloudy	Mid-Flood	Moderate	В	20.5	11:45:00 AM	9.17	8.03	32.08	21.19	2.25	3.00	<0.1	<0.01
CF	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:38:00 AM	9.1	8.09	32.16	21.33	2.45	3.00	<0.1	<0.01
CF	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:38:00 AM	9.24	8.10	32.1	21.38	2.51	2.50	<0.1	<0.01
CF	20/03/2025	Cloudy	Mid-Flood	Moderate	М	10.05	8:39:00 AM	9.33	8.09	31.99	21.33	2.56	3.00	<0.1	<0.01
CF	20/03/2025	Cloudy	Mid-Flood	Moderate	М	10.05	8:39:00 AM	9.15	8.10	32.06	21.37	2.67	2.50	<0.1	<0.01
CF	20/03/2025	Cloudy	Mid-Flood	Moderate	В	19.1	8:40:00 AM	9.27	8.14	32.05	21.35	2.34	4.00	<0.1	<0.01
CF	20/03/2025	Cloudy	Mid-Flood	Moderate	В	19.1	8:40:00 AM	9.18	8.13	32.17	21.36	2.31	3.00	<0.1	<0.01
WSR01	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:02:00 AM	9.14	7.98	32.34	21.12	2.06	6.00	<0.1	<0.01
WSR01	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:02:00 AM	9	8.03	32.35	21.12	2.04	3.00	<0.1	<0.01
WSR01	20/03/2025	Cloudy	Mid-Flood	Moderate	М	4.75	9:03:00 AM	9.1	7.98	32.35	21.1	2.07	2.50	<0.1	<0.01
WSR01	20/03/2025	Cloudy	Mid-Flood	Moderate	М	4.75	9:03:00 AM	9.16	8.03	32.39	21.13	2.06	3.00	<0.1	<0.01
WSR01	20/03/2025	Cloudy	Mid-Flood	Moderate	В	8.5	9:04:00 AM	9	8.03	32.32	21.13	2.08	2.50	<0.1	<0.01
WSR01	20/03/2025	Cloudy	Mid-Flood	Moderate	В	8.5	9:04:00 AM	8.95	7.99	32.27	21.13	2.1	3.00	<0.1	<0.01
WSR02	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:21:00 AM	8.43	7.97	31.57	21.25	1.62	3.00	<0.1	<0.01
WSR02	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:21:00 AM	8.35	7.94	31.59	21.22	1.65	5.00	<0.1	<0.01
WSR02	20/03/2025	Cloudy	Mid-Flood	Moderate	М	4.95	9:22:00 AM	8.58	7.93	31.43	21.24	1.6	3.00	<0.1	<0.01
WSR02	20/03/2025	Cloudy	Mid-Flood	Moderate	М	4.95	9:22:00 AM	8.39	7.95	31.51	21.24	1.66	2.50	<0.1	<0.01
WSR02	20/03/2025	Cloudy	Mid-Flood	Moderate	В	8.9	9:23:00 AM	8.44	7.93	31.57	21.24	1.69	3.00	<0.1	<0.01
WSR02	20/03/2025	Cloudy	Mid-Flood	Moderate	В	8.9	9:23:00 AM	8.59	8.00	31.45	21.22	1.6	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR03	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:35:00 AM	8.5	8.16	31.4	21.13	1.64	3.00	<0.1	<0.01
WSR03	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:35:00 AM	8.49	8.16	31.4	21.11	1.56	5.00	<0.1	<0.01
WSR03	20/03/2025	Cloudy	Mid-Flood	Moderate	M	3.95	9:36:00 AM	8.62	8.17	31.51	21.12	1.62	2.50	<0.1	<0.01
WSR03	20/03/2025	Cloudy	Mid-Flood	Moderate	М	3.95	9:36:00 AM	8.44	8.17	31.38	21.11	1.57	3.00	<0.1	<0.01
WSR03	20/03/2025	Cloudy	Mid-Flood	Moderate	В	6.9	9:37:00 AM	8.54	8.16	31.42	21.1	1.56	2.50	<0.1	<0.01
WSR03	20/03/2025	Cloudy	Mid-Flood	Moderate	В	6.9	9:37:00 AM	8.67	8.13	31.46	21.15	1.62	4.00	<0.1	<0.01
WSR04	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:48:00 AM	8.7	8.07	31.34	21.23	1.68	3.00	<0.1	<0.01
WSR04	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:48:00 AM	8.76	8.07	31.35	21.28	1.67	2.50	<0.1	<0.01
WSR04	20/03/2025	Cloudy	Mid-Flood	Moderate	M	3.35	9:49:00 AM	8.72	8.06	31.25	21.23	1.62	3.00	<0.1	<0.01
WSR04	20/03/2025	Cloudy	Mid-Flood	Moderate	M	3.35	9:49:00 AM	8.87	8.08	31.36	21.24	1.61	4.00	<0.1	<0.01
WSR04	20/03/2025	Cloudy	Mid-Flood	Moderate	В	5.7	9:50:00 AM	8.72	8.11	31.26	21.25	1.73	3.00	<0.1	<0.01
WSR04	20/03/2025	Cloudy	Mid-Flood	Moderate	В	5.7	9:50:00 AM	8.81	8.09	31.16	21.27	1.77	3.00	<0.1	<0.01
WSR16	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:18:00 AM	9	8.25	31.65	21.16	1.87	2.50	<0.1	<0.01
WSR16	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:18:00 AM	8.82	8.21	31.59	21.13	1.89	3.00	<0.1	<0.01
WSR16	20/03/2025	Cloudy	Mid-Flood	Moderate	M	7.6	11:19:00 AM	8.74	8.25	31.66	21.15	1.9	2.50	<0.1	<0.01
WSR16	20/03/2025	Cloudy	Mid-Flood	Moderate	М	7.6	11:19:00 AM	8.9	8.24	31.56	21.16	1.84	4.00	<0.1	<0.01
WSR16	20/03/2025	Cloudy	Mid-Flood	Moderate	В	14.2	11:20:00 AM	8.91	8.23	31.71	21.16	1.91	3.00	<0.1	<0.01
WSR16	20/03/2025	Cloudy	Mid-Flood	Moderate	В	14.2	11:20:00 AM	8.95	8.21	31.59	21.16	1.88	3.00	<0.1	<0.01
WSR33	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:03:00 AM	9.69	8.14	31.7	21.41	1.59	3.00	<0.1	<0.01
WSR33	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:03:00 AM	9.65	8.12	31.73	21.42	1.61	4.00	<0.1	<0.01
WSR33	20/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	10:04:00 AM	9.57	8.17	31.71	21.41	1.56	2.50	<0.1	<0.01
WSR33	20/03/2025	Cloudy	Mid-Flood	Moderate	M	3.8	10:04:00 AM	9.52	8.17	31.64	21.41	1.58	3.00	<0.1	<0.01
WSR33	20/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	10:05:00 AM	9.66	8.19	31.79	21.43	1.59	2.50	<0.1	<0.01
WSR33	20/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	10:05:00 AM	9.65	8.18	31.71	21.45	1.65	3.00	<0.1	<0.01
WSR36	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:18:00 AM	8.47	8.07	32.06	21.09	1.8	3.00	<0.1	<0.01
WSR36	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:18:00 AM	8.63	8.06	32.18	21.13	1.79	4.00	<0.1	<0.01
WSR36	20/03/2025	Cloudy	Mid-Flood	Moderate	М	3.15	10:19:00 AM	8.6	8.06	32.12	21.13	1.74	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR36	20/03/2025	Cloudy	Mid-Flood	Moderate	М	3.15	10:19:00 AM	8.45	8.09	31.99	21.07	1.77	3.00	<0.1	<0.01
WSR36	20/03/2025	Cloudy	Mid-Flood	Moderate	В	5.3	10:19:00 AM	8.43	8.08	32.11	21.13	1.69	2.50	<0.1	<0.01
WSR36	20/03/2025	Cloudy	Mid-Flood	Moderate	В	5.3	10:19:00 AM	8.49	8.04	32.19	21.08	1.66	2.50	<0.1	<0.01
WSR37	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:33:00 AM	8.63	8.14	32.33	21.23	1.91	3.00	<0.1	<0.01
WSR37	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:33:00 AM	8.61	8.08	32.36	21.25	1.93	4.00	<0.1	<0.01
WSR37	20/03/2025	Cloudy	Mid-Flood	Moderate	М	3.95	10:34:00 AM	8.75	8.10	32.32	21.21	1.95	4.00	<0.1	<0.01
WSR37	20/03/2025	Cloudy	Mid-Flood	Moderate	М	3.95	10:34:00 AM	8.62	8.15	32.22	21.22	1.88	3.00	<0.1	<0.01
WSR37	20/03/2025	Cloudy	Mid-Flood	Moderate	В	6.9	10:35:00 AM	8.69	8.10	32.38	21.25	1.95	3.00	<0.1	<0.01
WSR37	20/03/2025	Cloudy	Mid-Flood	Moderate	В	6.9	10:35:00 AM	8.81	8.14	32.36	21.24	1.91	2.50	<0.1	<0.01
NF1	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:02:00 AM	9.45	8.05	31.08	21.37	1.84	4.00	<0.1	<0.01
NF1	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:02:00 AM	9.38	8.04	31.25	21.41	1.9	3.00	<0.1	<0.01
NF1	20/03/2025	Cloudy	Mid-Flood	Moderate	М	6.6	11:03:00 AM	9.32	8.09	31.09	21.43	1.94	3.00	<0.1	<0.01
NF1	20/03/2025	Cloudy	Mid-Flood	Moderate	М	6.6	11:03:00 AM	9.3	8.07	31.17	21.39	1.91	3.00	<0.1	<0.01
NF1	20/03/2025	Cloudy	Mid-Flood	Moderate	В	12.2	11:04:00 AM	9.45	8.06	31.1	21.43	1.87	2.50	<0.1	<0.01
NF1	20/03/2025	Cloudy	Mid-Flood	Moderate	В	12.2	11:04:00 AM	9.27	8.05	31.03	21.42	1.94	4.00	<0.1	<0.01
NF2	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:53:00 AM	9.11	8.11	31.2	21.22	1.66	5.00	<0.1	<0.01
NF2	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:53:00 AM	9.17	8.12	30.99	21.19	1.65	2.50	<0.1	<0.01
NF2	20/03/2025	Cloudy	Mid-Flood	Moderate	М	5.2	10:54:00 AM	9.2	8.10	31.07	21.21	1.72	2.50	<0.1	<0.01
NF2	20/03/2025	Cloudy	Mid-Flood	Moderate	М	5.2	10:54:00 AM	9.17	8.12	31.17	21.17	1.67	3.00	<0.1	<0.01
NF2	20/03/2025	Cloudy	Mid-Flood	Moderate	В	9.4	10:55:00 AM	9.18	8.10	31.19	21.22	1.73	3.00	<0.1	<0.01
NF2	20/03/2025	Cloudy	Mid-Flood	Moderate	В	9.4	10:55:00 AM	9.1	8.09	31.17	21.21	1.69	2.50	<0.1	<0.01
NF3	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:45:00 AM	9.6	8.16	31.61	21.39	1.57	3.00	<0.1	<0.01
NF3	20/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:45:00 AM	9.62	8.15	31.79	21.37	1.59	2.50	<0.1	<0.01
NF3	20/03/2025	Cloudy	Mid-Flood	Moderate	М	6.25	10:46:00 AM	9.6	8.16	31.59	21.41	1.66	3.00	<0.1	<0.01
NF3	20/03/2025	Cloudy	Mid-Flood	Moderate	М	6.25	10:46:00 AM	9.48	8.17	31.66	21.36	1.69	5.00	<0.1	<0.01
NF3	20/03/2025	Cloudy	Mid-Flood	Moderate	В	11.5	10:47:00 AM	9.37	8.19	31.58	21.4	1.75	3.00	<0.1	<0.01
NF3	20/03/2025	Cloudy	Mid-Flood	Moderate	В	11.5	10:47:00 AM	9.5	8.16	31.62	21.38	1.71	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CE	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	12:29:00 PM	9.27	8.04	32.83	21.39	2.24	2.50	<0.1	<0.01
CE	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	12:29:00 PM	9.38	8.07	32.86	21.38	2.19	2.50	<0.1	<0.01
CE	22/03/2025	Cloudy	Mid-Flood	Moderate	M	10.55	12:30:00 PM	9.44	8.06	32.79	21.33	2.12	2.50	<0.1	<0.01
CE	22/03/2025	Cloudy	Mid-Flood	Moderate	М	10.55	12:30:00 PM	9.14	8.09	32.72	21.36	2.09	3.00	<0.1	<0.01
CE	22/03/2025	Cloudy	Mid-Flood	Moderate	В	20.1	12:31:00 PM	9.36	8.06	32.72	21.41	2.05	2.50	<0.1	<0.01
CE	22/03/2025	Cloudy	Mid-Flood	Moderate	В	20.1	12:31:00 PM	9.35	8.05	32.85	21.45	2.03	3.00	<0.1	<0.01
CF	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:21:00 AM	8.95	8.12	32.86	21.65	2.41	2.50	<0.1	<0.01
CF	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:21:00 AM	8.92	8.13	32.87	21.75	2.34	3.00	<0.1	<0.01
CF	22/03/2025	Cloudy	Mid-Flood	Moderate	М	10.75	9:22:00 AM	8.89	8.10	32.87	21.76	2.32	2.50	<0.1	<0.01
CF	22/03/2025	Cloudy	Mid-Flood	Moderate	М	10.75	9:22:00 AM	9.16	8.08	32.88	21.67	2.36	2.50	<0.1	<0.01
CF	22/03/2025	Cloudy	Mid-Flood	Moderate	В	20.5	9:23:00 AM	9.26	8.08	32.81	21.76	2.42	2.50	<0.1	<0.01
CF	22/03/2025	Cloudy	Mid-Flood	Moderate	В	20.5	9:23:00 AM	9.21	8.12	32.98	21.74	2.48	3.00	<0.1	<0.01
WSR01	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:48:00 AM	9.36	8.22	32.35	21.52	2.02	4.00	<0.1	<0.01
WSR01	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:48:00 AM	9.33	8.22	32.47	21.43	2.07	4.00	<0.1	<0.01
WSR01	22/03/2025	Cloudy	Mid-Flood	Moderate	М	4.4	9:49:00 AM	9.43	8.22	32.34	21.48	2.01	2.50	<0.1	<0.01
WSR01	22/03/2025	Cloudy	Mid-Flood	Moderate	М	4.4	9:49:00 AM	9.5	8.22	32.33	21.5	2.03	2.50	<0.1	<0.01
WSR01	22/03/2025	Cloudy	Mid-Flood	Moderate	В	7.8	9:50:00 AM	9.52	8.23	32.38	21.45	2.05	2.50	<0.1	<0.01
WSR01	22/03/2025	Cloudy	Mid-Flood	Moderate	В	7.8	9:50:00 AM	9.58	8.26	32.56	21.48	2.02	4.00	<0.1	<0.01
WSR02	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:08:00 AM	8.85	8.03	32.06	21.43	1.63	5.00	<0.1	<0.01
WSR02	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:08:00 AM	8.93	8.01	31.97	21.38	1.66	9.00	<0.1	<0.01
WSR02	22/03/2025	Cloudy	Mid-Flood	Moderate	М	4.6	10:09:00 AM	8.93	8.04	31.82	21.38	1.61	2.50	<0.1	<0.01
WSR02	22/03/2025	Cloudy	Mid-Flood	Moderate	М	4.6	10:09:00 AM	8.87	8.06	32	21.33	1.64	2.50	<0.1	<0.01
WSR02	22/03/2025	Cloudy	Mid-Flood	Moderate	В	8.2	10:10:00 AM	8.87	8.02	31.96	21.33	1.66	2.50	<0.1	<0.01
WSR02	22/03/2025	Cloudy	Mid-Flood	Moderate	В	8.2	10:10:00 AM	8.98	8.00	31.99	21.38	1.65	3.00	<0.1	<0.01
WSR03	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:22:00 AM	9.5	8.12	31.84	21.37	1.99	4.00	<0.1	<0.01
WSR03	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:22:00 AM	9.71	8.18	31.89	21.3	2.16	3.00	<0.1	<0.01
WSR03	22/03/2025	Cloudy	Mid-Flood	Moderate	M	3.95	10:23:00 AM	9.36	8.18	31.8	21.28	2.17	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR03	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.95	10:23:00 AM	9.35	8.13	31.97	21.35	1.85	3.00	<0.1	<0.01
WSR03	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.9	10:24:00 AM	9.56	8.12	31.77	21.29	1.77	2.50	<0.1	<0.01
WSR03	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.9	10:24:00 AM	9.57	8.14	31.91	21.38	1.83	3.00	<0.1	<0.01
WSR04	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:36:00 AM	9.22	7.98	31.74	21.47	1.65	2.50	<0.1	<0.01
WSR04	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:36:00 AM	9.12	8.02	31.55	21.48	1.68	2.50	<0.1	<0.01
WSR04	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.7	10:37:00 AM	9.13	8.00	31.67	21.48	1.77	2.50	<0.1	<0.01
WSR04	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.7	10:37:00 AM	9.03	8.00	31.74	21.5	1.71	4.00	<0.1	<0.01
WSR04	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.4	10:38:00 AM	9.13	7.98	31.75	21.47	1.66	2.50	<0.1	<0.01
WSR04	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.4	10:38:00 AM	9.08	7.97	31.67	21.53	1.65	2.50	<0.1	<0.01
WSR16	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	12:06:00 PM	9.24	8.24	32.23	21.62	1.62	2.50	<0.1	<0.01
WSR16	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	12:06:00 PM	9.3	8.27	32.34	21.58	1.51	3.00	<0.1	<0.01
WSR16	22/03/2025	Cloudy	Mid-Flood	Moderate	М	8.45	12:07:00 PM	9.27	8.24	32.36	21.56	1.48	2.50	<0.1	<0.01
WSR16	22/03/2025	Cloudy	Mid-Flood	Moderate	М	8.45	12:07:00 PM	9.28	8.25	32.34	21.53	1.47	2.50	<0.1	<0.01
WSR16	22/03/2025	Cloudy	Mid-Flood	Moderate	В	15.9	12:08:00 PM	9.46	8.29	32.22	21.56	1.45	2.50	<0.1	<0.01
WSR16	22/03/2025	Cloudy	Mid-Flood	Moderate	В	15.9	12:08:00 PM	9.44	8.25	32.24	21.6	1.47	2.50	<0.1	<0.01
WSR33	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:51:00 AM	9.2	8.19	32.04	21.49	1.71	2.50	<0.1	<0.01
WSR33	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:51:00 AM	9.42	8.20	32.1	21.53	1.69	2.50	<0.1	<0.01
WSR33	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	10:52:00 AM	9.45	8.15	31.9	21.49	1.68	2.50	<0.1	<0.01
WSR33	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	10:52:00 AM	9.17	8.19	31.98	21.56	1.67	2.50	<0.1	<0.01
WSR33	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	10:53:00 AM	9.35	8.14	32.06	21.47	1.66	2.50	<0.1	<0.01
WSR33	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	10:53:00 AM	9.24	8.14	32.08	21.47	1.62	2.50	<0.1	<0.01
WSR36	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:08:00 AM	8.73	8.22	32.75	21.14	1.99	2.50	<0.1	<0.01
WSR36	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:08:00 AM	8.59	8.21	32.68	21.18	1.97	2.50	<0.1	<0.01
WSR36	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	11:09:00 AM	8.42	8.18	32.7	21.18	1.97	2.50	<0.1	<0.01
WSR36	22/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	11:09:00 AM	8.58	8.22	32.7	21.19	1.92	3.00	<0.1	<0.01
WSR36	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	11:09:00 AM	8.79	8.18	32.68	21.21	1.91	2.50	<0.1	<0.01
WSR36	22/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	11:09:00 AM	8.55	8.23	32.59	21.17	1.96	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR37	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:25:00 AM	8.83	8.04	32.73	21.76	1.72	3.00	<0.1	<0.01
WSR37	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:25:00 AM	9.16	8.09	32.78	21.8	1.69	2.50	<0.1	<0.01
WSR37	22/03/2025	Cloudy	Mid-Flood	Moderate	М	4.45	11:26:00 AM	9	8.04	32.75	21.78	1.64	2.50	<0.1	<0.01
WSR37	22/03/2025	Cloudy	Mid-Flood	Moderate	М	4.45	11:26:00 AM	9.12	8.08	32.7	21.8	1.68	2.50	<0.1	<0.01
WSR37	22/03/2025	Cloudy	Mid-Flood	Moderate	В	7.9	11:27:00 AM	8.93	8.08	32.93	21.68	1.63	2.50	<0.1	<0.01
WSR37	22/03/2025	Cloudy	Mid-Flood	Moderate	В	7.9	11:27:00 AM	9.04	8.06	32.68	21.72	1.67	2.50	<0.1	<0.01
NF1	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:51:00 AM	8.98	8.23	32.62	21.55	1.65	8.00	<0.1	<0.01
NF1	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:51:00 AM	9.05	8.24	32.67	21.56	1.61	12.00	<0.1	<0.01
NF1	22/03/2025	Cloudy	Mid-Flood	Moderate	M	6.9	11:52:00 AM	8.87	8.24	32.62	21.62	1.59	13.00	<0.1	<0.01
NF1	22/03/2025	Cloudy	Mid-Flood	Moderate	М	6.9	11:52:00 AM	9.17	8.24	32.79	21.65	1.52	10.00	<0.1	<0.01
NF1	22/03/2025	Cloudy	Mid-Flood	Moderate	В	12.8	11:53:00 AM	9.09	8.19	32.57	21.6	1.56	8.00	<0.1	<0.01
NF1	22/03/2025	Cloudy	Mid-Flood	Moderate	В	12.8	11:53:00 AM	8.95	8.23	32.79	21.54	1.53	15.00	<0.1	<0.01
NF2	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:42:00 AM	9.37	7.98	32.8	21.38	1.74	10.00	<0.1	<0.01
NF2	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:42:00 AM	9.42	7.99	33.02	21.29	1.72	18.00	<0.1	<0.01
NF2	22/03/2025	Cloudy	Mid-Flood	Moderate	М	5.1	11:43:00 AM	9.61	8.04	33.01	21.33	1.72	10.00	<0.1	<0.01
NF2	22/03/2025	Cloudy	Mid-Flood	Moderate	М	5.1	11:43:00 AM	9.63	8.00	32.8	21.36	1.73	5.00	<0.1	<0.01
NF2	22/03/2025	Cloudy	Mid-Flood	Moderate	В	9.2	11:44:00 AM	9.33	8.00	32.92	21.26	1.7	16.00	<0.1	<0.01
NF2	22/03/2025	Cloudy	Mid-Flood	Moderate	В	9.2	11:44:00 AM	9.33	7.99	32.87	21.33	1.67	14.00	<0.1	<0.01
NF3	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:35:00 AM	9.12	8.16	31.97	21.29	1.68	9.00	<0.1	<0.01
NF3	22/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:35:00 AM	8.89	8.11	31.84	21.32	1.64	9.00	<0.1	<0.01
NF3	22/03/2025	Cloudy	Mid-Flood	Moderate	М	6	11:36:00 AM	9	8.12	32.01	21.34	1.63	14.00	<0.1	<0.01
NF3	22/03/2025	Cloudy	Mid-Flood	Moderate	М	6	11:36:00 AM	8.97	8.13	31.91	21.26	1.67	19.00	<0.1	<0.01
NF3	22/03/2025	Cloudy	Mid-Flood	Moderate	В	11	11:37:00 AM	8.94	8.12	31.94	21.27	1.45	13.00	<0.1	<0.01
NF3	22/03/2025	Cloudy	Mid-Flood	Moderate	В	11	11:37:00 AM	8.95	8.14	31.89	21.23	1.62	8.00	<0.1	<0.01
CE	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:19:00 AM	8.38	8.05	31.35	21.21	2.28	2.50	<0.1	<0.01
CE	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	11:19:00 AM	8.51	8.09	31.35	21.15	2.15	3.00	<0.1	<0.01
CE	25/03/2025	Cloudy	Mid-Flood	Moderate	М	11.7	11:20:00 AM	8.4	8.05	31.31	21.17	2.17	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CE	25/03/2025	Cloudy	Mid-Flood	Moderate	М	11.7	11:20:00 AM	8.42	8.06	31.43	21.28	2.21	3.00	<0.1	<0.01
CE	25/03/2025	Cloudy	Mid-Flood	Moderate	В	22.4	11:21:00 AM	8.41	8.09	31.48	21.23	2.26	2.50	<0.1	<0.01
CE	25/03/2025	Cloudy	Mid-Flood	Moderate	В	22.4	11:21:00 AM	8.53	8.04	31.48	21.22	2.27	2.50	<0.1	<0.01
CF	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:06:00 AM	8.73	8.20	32.29	21.33	2.48	2.50	<0.1	<0.01
CF	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:06:00 AM	8.81	8.20	32.42	21.25	2.53	3.00	<0.1	<0.01
CF	25/03/2025	Cloudy	Mid-Flood	Moderate	М	10.3	8:07:00 AM	8.73	8.15	32.29	21.28	2.49	2.50	<0.1	<0.01
CF	25/03/2025	Cloudy	Mid-Flood	Moderate	М	10.3	8:07:00 AM	8.81	8.20	32.42	21.38	2.44	2.50	<0.1	<0.01
CF	25/03/2025	Cloudy	Mid-Flood	Moderate	В	19.6	8:08:00 AM	8.78	8.17	32.4	21.29	2.45	3.00	<0.1	<0.01
CF	25/03/2025	Cloudy	Mid-Flood	Moderate	В	19.6	8:08:00 AM	8.72	8.19	32.24	21.35	2.49	2.50	<0.1	<0.01
WSR01	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:30:00 AM	8.71	8.13	32.2	21.19	1.76	3.00	<0.1	<0.01
WSR01	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:30:00 AM	8.78	8.18	32.25	21.15	1.88	3.00	<0.1	<0.01
WSR01	25/03/2025	Cloudy	Mid-Flood	Moderate	М	4.2	8:31:00 AM	8.77	8.19	32.17	21.07	1.79	3.00	<0.1	<0.01
WSR01	25/03/2025	Cloudy	Mid-Flood	Moderate	М	4.2	8:31:00 AM	8.61	8.15	32.3	21.2	1.76	2.50	<0.1	<0.01
WSR01	25/03/2025	Cloudy	Mid-Flood	Moderate	В	7.4	8:32:00 AM	8.87	8.17	32.28	21.18	1.8	3.00	<0.1	<0.01
WSR01	25/03/2025	Cloudy	Mid-Flood	Moderate	В	7.4	8:32:00 AM	8.77	8.15	32.17	21.16	1.83	3.00	<0.1	<0.01
WSR02	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:49:00 AM	9.3	8.10	31.51	21.31	1.62	2.50	<0.1	<0.01
WSR02	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	8:49:00 AM	9.43	8.12	31.65	21.44	1.66	4.00	<0.1	<0.01
WSR02	25/03/2025	Cloudy	Mid-Flood	Moderate	М	4.8	8:50:00 AM	9.37	8.07	31.65	21.39	1.64	2.50	<0.1	<0.01
WSR02	25/03/2025	Cloudy	Mid-Flood	Moderate	М	4.8	8:50:00 AM	9.42	8.10	31.48	21.3	1.71	2.50	<0.1	<0.01
WSR02	25/03/2025	Cloudy	Mid-Flood	Moderate	В	8.6	8:51:00 AM	9.53	8.07	31.51	21.34	1.7	2.50	<0.1	<0.01
WSR02	25/03/2025	Cloudy	Mid-Flood	Moderate	В	8.6	8:51:00 AM	9.5	8.10	31.63	21.39	1.72	2.50	<0.1	<0.01
WSR03	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:05:00 AM	8.65	8.17	32	21.34	1.83	2.50	<0.1	<0.01
WSR03	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:05:00 AM	8.53	8.15	31.94	21.4	1.91	4.00	<0.1	<0.01
WSR03	25/03/2025	Cloudy	Mid-Flood	Moderate	М	4.1	9:06:00 AM	8.55	8.16	31.97	21.46	1.9	2.50	<0.1	<0.01
WSR03	25/03/2025	Cloudy	Mid-Flood	Moderate	М	4.1	9:06:00 AM	8.72	8.18	32.04	21.43	1.93	2.50	<0.1	<0.01
WSR03	25/03/2025	Cloudy	Mid-Flood	Moderate	В	7.2	9:07:00 AM	8.72	8.21	32.08	21.34	1.93	2.50	<0.1	<0.01
WSR03	25/03/2025	Cloudy	Mid-Flood	Moderate	В	7.2	9:07:00 AM	8.57	8.18	31.99	21.48	1.91	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR04	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:19:00 AM	8.18	8.22	32.29	21.47	1.91	2.50	<0.1	<0.01
WSR04	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:19:00 AM	8.17	8.26	32.36	21.5	1.88	3.00	<0.1	<0.01
WSR04	25/03/2025	Cloudy	Mid-Flood	Moderate	M	3.9	9:20:00 AM	8.25	8.24	32.24	21.59	1.84	4.00	<0.1	<0.01
WSR04	25/03/2025	Cloudy	Mid-Flood	Moderate	М	3.9	9:20:00 AM	8.07	8.28	32.42	21.5	1.79	3.00	<0.1	<0.01
WSR04	25/03/2025	Cloudy	Mid-Flood	Moderate	В	6.8	9:21:00 AM	8.34	8.26	32.36	21.58	1.82	2.50	<0.1	<0.01
WSR04	25/03/2025	Cloudy	Mid-Flood	Moderate	В	6.8	9:21:00 AM	8.09	8.23	32.27	21.47	1.8	4.00	<0.1	<0.01
WSR16	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:56:00 AM	9.13	8.17	32.24	21.42	1.59	3.00	<0.1	<0.01
WSR16	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:56:00 AM	9.18	8.20	32.19	21.45	1.61	4.00	<0.1	<0.01
WSR16	25/03/2025	Cloudy	Mid-Flood	Moderate	М	8.5	10:57:00 AM	9.02	8.22	32.29	21.38	1.59	3.00	<0.1	<0.01
WSR16	25/03/2025	Cloudy	Mid-Flood	Moderate	М	8.5	10:57:00 AM	8.94	8.17	32.19	21.48	1.61	3.00	<0.1	<0.01
WSR16	25/03/2025	Cloudy	Mid-Flood	Moderate	В	16	10:58:00 AM	8.96	8.22	32.12	21.35	1.68	2.50	<0.1	<0.01
WSR16	25/03/2025	Cloudy	Mid-Flood	Moderate	В	16	10:58:00 AM	9.1	8.21	32.17	21.38	1.62	2.50	<0.1	<0.01
WSR33	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:35:00 AM	8.16	8.23	31.79	21.48	1.52	2.50	<0.1	<0.01
WSR33	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:35:00 AM	8.26	8.22	31.99	21.45	1.67	3.00	<0.1	<0.01
WSR33	25/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	9:36:00 AM	8.26	8.25	31.82	21.49	1.64	2.50	<0.1	<0.01
WSR33	25/03/2025	Cloudy	Mid-Flood	Moderate	М	3.8	9:36:00 AM	8.18	8.21	31.97	21.48	1.65	2.50	<0.1	<0.01
WSR33	25/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	9:37:00 AM	8.18	8.25	31.83	21.57	1.58	2.50	<0.1	<0.01
WSR33	25/03/2025	Cloudy	Mid-Flood	Moderate	В	6.6	9:37:00 AM	8.3	8.27	31.97	21.47	1.72	2.50	<0.1	<0.01
WSR36	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:52:00 AM	9.07	8.23	32.36	21.32	1.67	2.50	<0.1	<0.01
WSR36	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	9:52:00 AM	9.23	8.27	32.33	21.28	1.47	3.00	<0.1	<0.01
WSR36	25/03/2025	Cloudy	Mid-Flood	Moderate	М	3.5	9:53:00 AM	9	8.28	32.29	21.23	1.68	2.50	<0.1	<0.01
WSR36	25/03/2025	Cloudy	Mid-Flood	Moderate	М	3.5	9:53:00 AM	9.13	8.27	32.44	21.23	1.45	2.50	<0.1	<0.01
WSR36	25/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:53:00 AM	9.18	8.25	32.45	21.25	1.62	3.00	<0.1	<0.01
WSR36	25/03/2025	Cloudy	Mid-Flood	Moderate	В	6	9:53:00 AM	9.21	8.22	32.37	21.35	1.68	2.50	<0.1	<0.01
WSR37	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:10:00 AM	8.96	8.25	31.7	21.12	1.83	3.00	<0.1	<0.01
WSR37	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:10:00 AM	8.86	8.25	31.75	21.04	1.91	2.50	<0.1	<0.01
WSR37	25/03/2025	Cloudy	Mid-Flood	Moderate	M	4.1	10:11:00 AM	8.92	8.25	31.72	21.04	1.82	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR37	25/03/2025	Cloudy	Mid-Flood	Moderate	M	4.1	10:11:00 AM	8.96	8.23	31.74	21.06	1.87	4.00	<0.1	<0.01
WSR37	25/03/2025	Cloudy	Mid-Flood	Moderate	В	7.2	10:12:00 AM	8.78	8.26	31.66	21.04	1.93	2.50	<0.1	<0.01
WSR37	25/03/2025	Cloudy	Mid-Flood	Moderate	В	7.2	10:12:00 AM	8.78	8.21	31.75	21.13	1.86	2.50	<0.1	<0.01
NF1	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:41:00 AM	8.07	8.27	32.59	21.44	1.56	2.50	<0.1	<0.01
NF1	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:41:00 AM	8.18	8.25	32.66	21.4	1.59	2.50	<0.1	<0.01
NF1	25/03/2025	Cloudy	Mid-Flood	Moderate	М	7.05	10:42:00 AM	8.07	8.29	32.53	21.43	1.6	2.50	<0.1	<0.01
NF1	25/03/2025	Cloudy	Mid-Flood	Moderate	М	7.05	10:42:00 AM	8.27	8.30	32.5	21.42	1.65	2.50	<0.1	<0.01
NF1	25/03/2025	Cloudy	Mid-Flood	Moderate	В	13.1	10:43:00 AM	8.21	8.29	32.64	21.32	1.6	3.00	<0.1	<0.01
NF1	25/03/2025	Cloudy	Mid-Flood	Moderate	В	13.1	10:43:00 AM	8.32	8.28	32.61	21.39	1.65	3.00	<0.1	<0.01
NF2	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:30:00 AM	8.68	8.16	32.86	21.39	2.09	2.50	<0.1	<0.01
NF2	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:30:00 AM	8.75	8.16	32.89	21.36	2.12	2.50	<0.1	<0.01
NF2	25/03/2025	Cloudy	Mid-Flood	Moderate	М	5.3	10:31:00 AM	8.85	8.12	32.82	21.27	2.01	2.50	<0.1	<0.01
NF2	25/03/2025	Cloudy	Mid-Flood	Moderate	М	5.3	10:31:00 AM	8.78	8.16	32.84	21.28	2.08	4.00	<0.1	<0.01
NF2	25/03/2025	Cloudy	Mid-Flood	Moderate	В	9.6	10:32:00 AM	8.78	8.12	32.75	21.34	2.1	3.00	<0.1	<0.01
NF2	25/03/2025	Cloudy	Mid-Flood	Moderate	В	9.6	10:32:00 AM	8.84	8.14	32.72	21.38	2.09	3.00	<0.1	<0.01
NF3	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:21:00 AM	8.6	8.20	32.2	21.41	2.02	2.50	<0.1	<0.01
NF3	25/03/2025	Cloudy	Mid-Flood	Moderate	S	1	10:21:00 AM	8.77	8.18	32.18	21.34	2.07	2.50	<0.1	<0.01
NF3	25/03/2025	Cloudy	Mid-Flood	Moderate	M	5.8	10:22:00 AM	8.75	8.19	32.24	21.33	2.07	2.50	<0.1	<0.01
NF3	25/03/2025	Cloudy	Mid-Flood	Moderate	М	5.8	10:22:00 AM	8.73	8.19	32.24	21.36	1.97	2.50	<0.1	<0.01
NF3	25/03/2025	Cloudy	Mid-Flood	Moderate	В	10.6	10:23:00 AM	8.73	8.18	32.05	21.43	1.98	4.00	<0.1	<0.01
NF3	25/03/2025	Cloudy	Mid-Flood	Moderate	В	10.6	10:23:00 AM	8.53	8.19	32.16	21.31	2.08	2.50	<0.1	<0.01
CE	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	9:26:00 AM	9.25	8.23	32	21.34	2.59	2.50	<0.1	<0.01
CE	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	9:26:00 AM	9.29	8.21	32.11	21.27	2.52	2.50	<0.1	<0.01
CE	27/03/2025	Cloudy	Mid-Ebb	Moderate	M	10.5	9:27:00 AM	9.17	8.26	31.97	21.4	2.6	2.50	<0.1	<0.01
CE	27/03/2025	Cloudy	Mid-Ebb	Moderate	M	10.5	9:27:00 AM	9.26	8.21	32.04	21.33	2.53	2.50	<0.1	<0.01
CE	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	20	9:28:00 AM	9.23	8.26	32.08	21.39	2.68	3.00	<0.1	<0.01
CE	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	20	9:28:00 AM	9.17	8.21	32.08	21.34	2.57	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CF	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:42:00 PM	8.44	8.24	30.93	21.38	2.23	3.00	<0.1	<0.01
CF	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:42:00 PM	8.35	8.20	30.83	21.4	2.21	2.50	<0.1	<0.01
CF	27/03/2025	Cloudy	Mid-Ebb	Moderate	M	10.4	12:43:00 PM	8.41	8.24	30.85	21.5	2.15	2.50	<0.1	<0.01
CF	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	10.4	12:43:00 PM	8.48	8.20	30.85	21.47	2.18	2.50	<0.1	<0.01
CF	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	19.8	12:44:00 PM	8.51	8.20	30.98	21.45	2.04	2.50	<0.1	<0.01
CF	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	19.8	12:44:00 PM	8.45	8.24	30.82	21.37	2.09	3.00	<0.1	<0.01
WSR01	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:16:00 PM	8.06	8.12	31.65	21.6	2.08	5.00	<0.1	<0.01
WSR01	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:16:00 PM	7.9	8.15	31.71	21.58	2.06	2.50	<0.1	<0.01
WSR01	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.45	12:17:00 PM	7.99	8.14	31.81	21.64	1.98	2.50	<0.1	<0.01
WSR01	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.45	12:17:00 PM	7.89	8.13	31.8	21.55	1.94	2.50	<0.1	<0.01
WSR01	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.9	12:18:00 PM	8.03	8.15	31.77	21.54	1.96	3.00	<0.1	<0.01
WSR01	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.9	12:18:00 PM	8.05	8.11	31.78	21.6	1.92	3.00	<0.1	<0.01
WSR02	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:56:00 AM	8.68	8.10	32.29	21.6	1.61	3.00	<0.1	<0.01
WSR02	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:56:00 AM	8.8	8.09	32.2	21.53	1.66	3.00	<0.1	<0.01
WSR02	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.65	11:57:00 AM	8.68	8.11	32.33	21.57	1.71	2.50	<0.1	<0.01
WSR02	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.65	11:57:00 AM	8.75	8.13	32.37	21.47	1.68	3.00	<0.1	<0.01
WSR02	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	8.3	11:58:00 AM	8.78	8.09	32.33	21.48	1.67	2.50	<0.1	<0.01
WSR02	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	8.3	11:58:00 AM	8.82	8.13	32.23	21.59	1.65	2.50	<0.1	<0.01
WSR03	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:38:00 AM	9.5	8.13	31.56	21.67	1.89	3.00	<0.1	<0.01
WSR03	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:38:00 AM	9.45	8.10	31.48	21.6	1.84	3.00	<0.1	<0.01
WSR03	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.15	11:39:00 AM	9.47	8.10	31.54	21.55	1.79	2.50	<0.1	<0.01
WSR03	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.15	11:39:00 AM	9.52	8.11	31.42	21.54	1.84	3.00	<0.1	<0.01
WSR03	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.3	11:40:00 AM	9.52	8.11	31.46	21.63	1.86	3.00	<0.1	<0.01
WSR03	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.3	11:40:00 AM	9.44	8.11	31.52	21.63	1.76	3.00	<0.1	<0.01
WSR04	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:24:00 AM	8.46	8.12	31.7	21.39	1.72	3.00	<0.1	<0.01
WSR04	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:24:00 AM	8.42	8.14	31.7	21.46	1.66	5.00	<0.1	<0.01
WSR04	27/03/2025	Cloudy	Mid-Ebb	Moderate	M	3.7	11:25:00 AM	8.39	8.14	31.81	21.34	1.65	4.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR04	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.7	11:25:00 AM	8.36	8.11	31.76	21.33	1.73	2.50	<0.1	<0.01
WSR04	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.4	11:26:00 AM	8.3	8.13	31.7	21.4	1.71	2.50	<0.1	<0.01
WSR04	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.4	11:26:00 AM	8.45	8.12	31.72	21.47	1.64	3.00	<0.1	<0.01
WSR16	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	9:48:00 AM	9.28	8.21	31.08	21.69	1.61	9.00	<0.1	<0.01
WSR16	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	9:48:00 AM	9.16	8.18	31.02	21.61	1.58	5.00	<0.1	<0.01
WSR16	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	8.55	9:49:00 AM	9.12	8.19	31.11	21.73	1.64	4.00	<0.1	<0.01
WSR16	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	8.55	9:49:00 AM	9.16	8.20	31.02	21.65	1.59	2.50	<0.1	<0.01
WSR16	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	16.1	9:50:00 AM	9.22	8.14	31.07	21.66	1.55	4.00	<0.1	<0.01
WSR16	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	16.1	9:50:00 AM	9.14	8.13	30.99	21.68	1.63	3.00	<0.1	<0.01
WSR33	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:08:00 AM	9.05	8.24	31.78	21.43	1.63	2.50	<0.1	<0.01
WSR33	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:08:00 AM	9.02	8.20	31.71	21.49	1.64	2.50	<0.1	<0.01
WSR33	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.7	11:09:00 AM	8.97	8.23	31.72	21.36	1.75	3.00	<0.1	<0.01
WSR33	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.7	11:09:00 AM	8.98	8.23	31.77	21.44	1.59	2.50	<0.1	<0.01
WSR33	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.4	11:10:00 AM	9.08	8.25	31.72	21.48	1.62	2.50	<0.1	<0.01
WSR33	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.4	11:10:00 AM	8.91	8.24	31.72	21.38	1.65	2.50	<0.1	<0.01
WSR36	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:53:00 AM	8.39	8.18	31.41	21.49	1.61	2.50	<0.1	<0.01
WSR36	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:53:00 AM	8.5	8.18	31.53	21.44	1.68	2.50	<0.1	<0.01
WSR36	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.55	10:54:00 AM	8.46	8.23	31.47	21.39	1.63	2.50	<0.1	<0.01
WSR36	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.55	10:54:00 AM	8.42	8.21	31.46	21.44	1.59	3.00	<0.1	<0.01
WSR36	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.1	10:54:00 AM	8.56	8.22	31.5	21.53	1.6	3.00	<0.1	<0.01
WSR36	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.1	10:54:00 AM	8.45	8.19	31.44	21.45	1.62	3.00	<0.1	<0.01
WSR37	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:45:00 AM	8.31	8.22	32.34	21.4	1.89	3.00	<0.1	<0.01
WSR37	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:45:00 AM	8.34	8.25	32.23	21.42	1.95	3.00	<0.1	<0.01
WSR37	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.25	10:46:00 AM	8.36	8.23	32.27	21.51	1.68	2.50	<0.1	<0.01
WSR37	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.25	10:46:00 AM	8.22	8.24	32.23	21.39	1.61	3.00	<0.1	<0.01
WSR37	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.5	10:47:00 AM	8.23	8.24	32.35	21.48	2.12	2.50	<0.1	<0.01
WSR37	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.5	10:47:00 AM	8.41	8.23	32.3	21.46	2.13	3.00	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF1	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:10:00 AM	8.63	8.18	31.09	21.51	2.1	2.50	<0.1	<0.01
NF1	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:10:00 AM	8.62	8.15	30.98	21.48	2.07	2.50	<0.1	<0.01
NF1	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	6.95	10:11:00 AM	8.73	8.16	31.02	21.43	1.66	2.50	<0.1	<0.01
NF1	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	6.95	10:11:00 AM	8.77	8.19	31.04	21.43	1.75	2.50	<0.1	<0.01
NF1	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	12.9	10:12:00 AM	8.72	8.20	31.14	21.5	1.68	2.50	<0.1	<0.01
NF1	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	12.9	10:12:00 AM	8.82	8.19	31.03	21.48	1.88	3.00	<0.1	<0.01
NF2	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:27:00 AM	8.41	8.04	31.88	21.51	1.83	2.50	<0.1	<0.01
NF2	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:27:00 AM	8.28	8.08	31.99	21.53	1.8	2.50	<0.1	<0.01
NF2	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	5.45	10:28:00 AM	8.3	8.06	31.91	21.55	1.89	3.00	<0.1	<0.01
NF2	27/03/2025	Cloudy	Mid-Ebb	Moderate	М	5.45	10:28:00 AM	8.29	8.07	31.96	21.61	1.81	3.00	<0.1	<0.01
NF2	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	9.9	10:29:00 AM	8.43	8.05	31.88	21.59	1.86	3.00	<0.1	<0.01
NF2	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	9.9	10:29:00 AM	8.48	8.04	32	21.56	1.83	3.00	<0.1	<0.01
NF3	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:36:00 AM	8.88	8.17	31.55	21.62	1.57	2.50	<0.1	<0.01
NF3	27/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:36:00 AM	8.78	8.18	31.63	21.61	1.61	2.50	<0.1	<0.01
NF3	27/03/2025	Cloudy	Mid-Ebb	Moderate	M	6.1	10:37:00 AM	8.8	8.18	31.59	21.55	1.58	2.50	<0.1	<0.01
NF3	27/03/2025	Cloudy	Mid-Ebb	Moderate	M	6.1	10:37:00 AM	8.91	8.16	31.6	21.58	1.52	2.50	<0.1	<0.01
NF3	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	11.2	10:38:00 AM	8.83	8.18	31.69	21.63	1.62	2.50	<0.1	<0.01
NF3	27/03/2025	Cloudy	Mid-Ebb	Moderate	В	11.2	10:38:00 AM	8.73	8.21	31.68	21.57	1.56	4.00	<0.1	<0.01
CE	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:33:00 AM	9.01	8.10	31.16	21.56	2.31	2.50	<0.1	<0.01
CE	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:33:00 AM	9.04	8.07	31.16	21.55	2.31	2.50	<0.1	<0.01
CE	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	10.2	10:34:00 AM	8.91	8.07	31.25	21.5	2.27	2.50	<0.1	<0.01
CE	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	10.2	10:34:00 AM	9.03	8.08	31.14	21.51	2.26	3.00	<0.1	<0.01
CE	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	19.4	10:35:00 AM	8.98	8.05	31.24	21.56	2.29	3.00	<0.1	<0.01
CE	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	19.4	10:35:00 AM	8.95	8.07	31.33	21.44	2.33	2.50	<0.1	<0.01
CF	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:42:00 PM	9.6	8.01	31.55	21.34	1.94	2.50	<0.1	<0.01
CF	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:42:00 PM	9.54	8.02	31.52	21.46	1.97	2.50	<0.1	<0.01
CF	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	10	1:43:00 PM	9.54	8.05	31.46	21.3	1.81	3.00	<0.1	<0.01
CF	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	10	1:43:00 PM	9.54	8.06	31.55	21.39	1.84	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
CF	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	19	1:44:00 PM	9.64	8.05	31.35	21.31	1.88	3.00	<0.1	<0.01
CF	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	19	1:44:00 PM	9.59	8.03	31.52	21.3	1.84	2.50	<0.1	<0.01
WSR01	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:19:00 PM	8.78	8.09	32.19	21.16	1.95	2.50	<0.1	<0.01
WSR01	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:19:00 PM	8.81	8.06	32.24	21.31	1.9	2.50	<0.1	<0.01
WSR01	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.45	1:20:00 PM	8.82	8.07	32.15	21.18	1.91	3.00	<0.1	<0.01
WSR01	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.45	1:20:00 PM	8.83	8.10	32.19	21.18	1.93	2.50	<0.1	<0.01
WSR01	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.9	1:21:00 PM	8.76	8.07	32.15	21.32	1.93	3.00	<0.1	<0.01
WSR01	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	7.9	1:21:00 PM	8.85	8.07	32.31	21.18	1.91	2.50	<0.1	<0.01
WSR02	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:00:00 PM	8.36	8.11	31.48	21.23	1.61	2.50	<0.1	<0.01
WSR02	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	1:00:00 PM	8.41	8.07	31.7	21.39	1.6	3.00	<0.1	<0.01
WSR02	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.8	1:01:00 PM	8.37	8.12	31.61	21.25	1.65	3.00	<0.1	<0.01
WSR02	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	4.8	1:01:00 PM	8.45	8.08	31.52	21.28	1.61	2.50	<0.1	<0.01
WSR02	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	8.6	1:02:00 PM	8.46	8.07	31.69	21.37	1.61	2.50	<0.1	<0.01
WSR02	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	8.6	1:02:00 PM	8.44	8.07	31.47	21.31	1.67	2.50	<0.1	<0.01
WSR03	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:42:00 PM	9.11	8.09	31.14	21.22	1.61	2.50	<0.1	<0.01
WSR03	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:42:00 PM	9.19	8.13	31.07	21.27	1.58	2.50	<0.1	<0.01
WSR03	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.75	12:43:00 PM	9.16	8.09	31.17	21.19	1.67	2.50	<0.1	<0.01
WSR03	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.75	12:43:00 PM	9.18	8.11	31.26	21.19	1.61	3.00	<0.1	<0.01
WSR03	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.5	12:44:00 PM	9.14	8.12	31.07	21.28	1.73	3.00	<0.1	<0.01
WSR03	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.5	12:44:00 PM	9.22	8.12	31.33	21.19	1.67	2.50	<0.1	<0.01
WSR04	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:28:00 PM	8.83	8.16	31.23	21.22	1.88	3.00	<0.1	<0.01
WSR04	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:28:00 PM	8.87	8.15	31.42	21.3	1.98	2.50	<0.1	<0.01
WSR04	29/03/2025	Cloudy	Mid-Ebb	Moderate	M	3.45	12:29:00 PM	8.76	8.17	31.35	21.19	2.01	2.50	<0.1	<0.01
WSR04	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.45	12:29:00 PM	8.89	8.18	31.2	21.15	1.97	2.50	<0.1	<0.01
WSR04	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	5.9	12:30:00 PM	8.78	8.19	31.33	21.21	1.94	3.00	<0.1	<0.01
WSR04	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	5.9	12:30:00 PM	8.78	8.20	31.24	21.24	2	2.50	<0.1	<0.01
WSR16	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:56:00 AM	9.06	8.23	31.86	21.35	1.69	3.00	<0.1	<0.01
WSR16	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	10:56:00 AM	9.06	8.21	31.68	21.39	1.63	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
WSR16	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	8.1	10:57:00 AM	9.13	8.16	31.7	21.42	1.67	2.50	<0.1	<0.01
WSR16	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	8.1	10:57:00 AM	9.09	8.15	31.6	21.41	1.71	2.50	<0.1	<0.01
WSR16	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	15.2	10:58:00 AM	9.13	8.22	31.67	21.48	1.77	2.50	<0.1	<0.01
WSR16	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	15.2	10:58:00 AM	9.02	8.22	31.88	21.4	1.73	2.50	<0.1	<0.01
WSR33	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:13:00 PM	8.94	8.13	32.19	21.36	1.87	2.50	<0.1	<0.01
WSR33	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	12:13:00 PM	8.91	8.12	32.04	21.39	1.9	2.50	<0.1	<0.01
WSR33	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.55	12:14:00 PM	8.98	8.09	32.18	21.36	1.88	2.50	<0.1	<0.01
WSR33	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.55	12:14:00 PM	8.94	8.10	32.11	21.36	1.85	2.50	<0.1	<0.01
WSR33	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.1	12:15:00 PM	8.91	8.13	32.01	21.39	1.89	3.00	<0.1	<0.01
WSR33	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.1	12:15:00 PM	8.87	8.08	32	21.47	1.85	4.00	<0.1	<0.01
WSR36	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:59:00 AM	9.12	8.13	32.4	21.43	1.71	2.50	<0.1	<0.01
WSR36	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:59:00 AM	9.17	8.11	32.13	21.52	1.72	2.50	<0.1	<0.01
WSR36	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.7	12:00:00 PM	9.04	8.13	32.32	21.51	1.75	3.00	<0.1	<0.01
WSR36	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.7	12:00:00 PM	9.07	8.17	32.25	21.44	1.76	2.50	<0.1	<0.01
WSR36	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.4	12:00:00 PM	9.05	8.18	32.27	21.45	1.74	2.50	<0.1	<0.01
WSR36	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.4	12:00:00 PM	9.08	8.18	32.28	21.48	1.71	2.50	<0.1	<0.01
WSR37	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:51:00 AM	8.45	8.18	31.21	21.31	1.88	2.50	<0.1	<0.01
WSR37	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:51:00 AM	8.48	8.16	31.13	21.33	1.83	2.50	<0.1	<0.01
WSR37	29/03/2025	Cloudy	Mid-Ebb	Moderate	M	3.85	11:52:00 AM	8.5	8.18	31.39	21.24	1.82	2.50	<0.1	<0.01
WSR37	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	3.85	11:52:00 AM	8.54	8.21	31.26	21.27	1.76	2.50	<0.1	<0.01
WSR37	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.7	11:53:00 AM	8.52	8.18	31.24	21.31	1.66	2.50	<0.1	<0.01
WSR37	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	6.7	11:53:00 AM	8.5	8.17	31.24	21.18	1.82	2.50	<0.1	<0.01
NF1	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:18:00 AM	9.21	8.11	31.31	21.22	1.62	2.50	<0.1	<0.01
NF1	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:18:00 AM	9.24	8.08	31.52	21.05	1.67	2.50	<0.1	<0.01
NF1	29/03/2025	Cloudy	Mid-Ebb	Moderate	M	7	11:19:00 AM	9.27	8.06	31.32	21.2	1.67	2.50	<0.1	<0.01
NF1	29/03/2025	Cloudy	Mid-Ebb	Moderate	M	7	11:19:00 AM	9.2	8.06	31.42	21.06	1.61	2.50	<0.1	<0.01
NF1	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	13	11:20:00 AM	9.2	8.11	31.52	21.06	1.66	2.50	<0.1	<0.01
NF1	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	13	11:20:00 AM	9.22	8.07	31.46	21.06	1.63	2.50	<0.1	<0.01

Location	Date	Weather	Tide	Sea Condition	Water Level	Depth (m)	Time	DO (mg/L)	pH	Sal (ppt)	Temp ((°C)	Turbidty (NTU)	SS (mg/L)	Iron (mg/L)	Total Residual Chlorine (mg/L)
NF2	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:33:00 AM	8.65	8.22	31.54	21.1	1.7	2.50	<0.1	<0.01
NF2	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:33:00 AM	8.59	8.22	31.3	21.23	1.68	2.50	<0.1	<0.01
NF2	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	5.1	11:34:00 AM	8.58	8.21	31.47	21.07	1.73	2.50	<0.1	<0.01
NF2	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	5.1	11:34:00 AM	8.51	8.20	31.3	21.1	1.7	3.00	<0.1	<0.01
NF2	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	9.2	11:35:00 AM	8.51	8.20	31.46	21.22	1.65	3.00	<0.1	<0.01
NF2	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	9.2	11:35:00 AM	8.62	8.23	31.53	21.14	1.72	3.00	<0.1	<0.01
NF3	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:42:00 AM	9.01	8.03	31.76	21.34	1.97	3.00	<0.1	<0.01
NF3	29/03/2025	Cloudy	Mid-Ebb	Moderate	S	1	11:42:00 AM	9	8.07	31.84	21.39	1.81	3.00	<0.1	<0.01
NF3	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	6.2	11:43:00 AM	9.04	8.06	31.67	21.29	1.85	2.50	<0.1	<0.01
NF3	29/03/2025	Cloudy	Mid-Ebb	Moderate	М	6.2	11:43:00 AM	9.04	8.06	31.88	21.45	1.86	3.00	<0.1	<0.01
NF3	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	11.4	11:44:00 AM	8.96	8.03	31.63	21.42	1.87	2.50	<0.1	<0.01
NF3	29/03/2025	Cloudy	Mid-Ebb	Moderate	В	11.4	11:44:00 AM	9.05	8.06	31.73	21.39	1.93	4.00	<0.1	<0.01

Date & Time	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)
03/01/2025 12:00 AM	49.51	8.05	18.4	0.02
03/01/2025 02:00 AM	49.54	8.01	18.3	0.03
03/01/2025 04:00 AM				
03/01/2025 06:00 AM	49.65	8.01	18.2	0.01
03/01/2025 08:00 AM	48.64	8.03	18.2	0.02
03/01/2025 10:00 AM				
03/01/2025 12:00 PM	50.14	8.00	18.3	0.03
03/01/2025 02:00 PM	50.17	7.98	18.5	0.02
03/01/2025 04:00 PM	50.30	7.94	18.4	0.01
03/01/2025 06:00 PM	50.24	7.96	18.5	0.05
03/01/2025 08:00 PM	50.14	8.01	18.5	0.04
03/01/2025 10:00 PM	50.14	8.03	18.1	0.02
03/02/2025 12:00 AM	50.65	7.94	18.0	0.01
03/02/2025 02:00 AM	50.51	7.90	18.1	0.01
03/02/2025 04:00 AM	51.65	8.01	18.0	0.02
03/02/2025 06:00 AM	51.04	8.04	18.0	0.02
03/02/2025 08:00 AM				ie to the plant has stopped
03/02/2025 10:00 AM	49.87	7.98	19.9	0.01
03/02/2025 12:00 PM	50.36	8.01	19.1	0.02
03/02/2025 02:00 PM	49.87	7.92	19.6	0.03
03/02/2025 04:00 PM	50.01	8.02	19.0	0.05
03/02/2025 06:00 PM	50.06	8.02	19.0	0.04
03/02/2025 08:00 PM	49.14	7.98	19.0	0.02
03/02/2025 10:00 PM	50.35	8.03	18.9	0.03
03/03/2025 12:00 AM	50.01	8.02	19.0	0.01
03/03/2025 02:00 AM	49.87	8.03	19.0	0.02
03/03/2025 04:00 AM	49.98	8.01	19.0	0.04
03/03/2025 06:00 AM	50.64	7.98	18.6	0.03
03/03/2025 08:00 AM	50.34	8.00	18.0	0.02
03/03/2025 10:00 AM	50.25	7.98	19.0	0.01
03/03/2025 12:00 PM	49.84	8.01	19.0	0.05
03/03/2025 02:00 PM	No effluent	discharge fr	om TKODP du production	ue to the plant has stopped
03/03/2025 04:00 PM	49.04	7.98	19.5	0.02
03/03/2025 06:00 PM	50.25	8.00	19.5	0.02
03/03/2025 08:00 PM	50.36	8.01	19.5	0.02
03/03/2025 10:00 PM	49.87	7.95	19.5	0.04
03/04/2025 12:00 AM	48.68	7.94	19.5	0.02
03/04/2025 02:00 AM	50.54	7.98	19.0	0.04
03/04/2025 04:00 AM	51.03	8.00	19.6	0.02
03/04/2025 06:00 AM	50.68	8.02	19.5	0.04
03/04/2025 08:00 AM	50.50	8.01	18.7	0.03
03/04/2025 10:00 AM	51.04	8.03	19.4	0.01
03/04/2025 12:00 PM	49.65	7.95	19.7	0.02
03/04/2025 02:00 PM	50.68	8.00	19.5	0.03
03/04/2025 04:00 PM	49.87	8.01	19.5	0.05
03/04/2025 06:00 PM	50.58	8.00	19.0	0.01
03/04/2025 08:00 PM	50.68	8.02	19.0	0.04
03/04/2025 10:00 PM	51.50	8.01	18.5	0.03

Date & Time	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)
03/05/2025 12:00 AM	52.10	7.99	18.9	0.02
03/05/2025 02:00 AM	51.88	8.00	18.9	0.01
03/05/2025 04:00 AM	50.54	8.01	18.8	0.03
03/05/2025 06:00 AM	51.89	8.02	18.8	0.01
03/05/2025 08:00 AM	51.76	7.98	18.7	0.02
03/05/2025 10:00 AM	51.54	7.85	18.7	0.03
03/05/2025 12:00 PM	52.01	7.96	18.5	0.02
03/05/2025 02:00 PM	51.33	8.03	18.6	0.05
03/05/2025 04:00 PM	51.03	8.01	18.5	0.03
03/05/2025 06:00 PM	50.87	7.94	18.5	0.04
03/05/2025 08:00 PM	51.12	8.03	18.5	0.03
03/05/2025 10:00 PM	50.68	8.02	18.5	0.04
03/06/2025 12:00 AM	51.01	7.99	18.5	0.02
03/06/2025 02:00 AM	50.68	7.85	18.5	0.01
03/06/2025 04:00 AM	50.54	7.94	18.4	0.03
03/06/2025 06:00 AM	51.01	8.03	18.5	0.01
03/06/2025 08:00 AM	50.01	8.02	18.5	0.01
03/06/2025 10:00 AM	52.83	7.97	19.2	0.02
03/06/2025 12:00 PM	52.83	7.90	19.2	0.03
03/06/2025 02:00 PM	52.77	8.00	19.2	0.01
03/06/2025 04:00 PM	52.49	8.02	19.0	0.02
03/06/2025 06:00 PM	52.33	8.01	19.0	0.01
03/06/2025 08:00 PM	51.54	8.00	19.0	0.03
03/06/2025 10:00 PM	52.22	7.95	19.0	0.01
03/07/2025 12:00 AM	52.18	8.01	19.0	0.02
03/07/2025 02:00 AM	51.01	7.89	19.0	0.01
03/07/2025 04:00 AM	51.55	8.03	19.0	0.01
03/07/2025 06:00 AM	51.99	7.96	19.0	0.02
03/07/2025 08:00 AM	52.01	8.01	19.0	0.01
03/07/2025 10:00 AM	51.98	8.02	18.9	0.02
03/07/2025 12:00 PM	52.00	7.93	19.0	0.03
03/07/2025 02:00 PM	51.93	7.91	18.9	0.01
03/07/2025 04:00 PM	51.88	8.03	19.0	0.01
03/07/2025 06:00 PM	51.74	8.01	18.9	0.02
03/07/2025 08:00 PM	51.05	7.98	19.0	0.01
03/07/2025 10:00 PM	51.68	8.00	19.0	0.01
03/08/2025 12:00 AM	51.00	8.02	18.9	0.02
03/08/2025 02:00 AM	52.01	8.01	19.0	0.03
03/08/2025 04:00 AM	51.47	7.94	18.8	0.04
03/08/2025 06:00 AM	51.68	7.97	18.8	0.03
03/08/2025 08:00 AM	50.54	7.96	19.0	0.02
03/08/2025 10:00 AM	50.04	8.02	18.9	0.01
03/08/2025 12:00 PM	50.65	8.03	19.0	0.03
03/08/2025 02:00 PM	52.01	7.90	19.0	0.02
03/08/2025 04:00 PM	50.14	8.03	19.0	0.01
03/08/2025 06:00 PM	49.98	8.04	19.1	0.05
03/08/2025 08:00 PM	50.21	8.01	18.9	0.03
03/08/2025 10:00 PM	50.10	8.03	19.0	0.04

Date & Time	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)
03/09/2025 12:00 AM	50.31	8.02	19.1	0.03
03/09/2025 02:00 AM	50.10	8.00	19.0	0.02
03/09/2025 04:00 AM	50.11	8.04	19.0	0.01
03/09/2025 06:00 AM	50.25	7.90	19.0	0.03
03/09/2025 08:00 AM	50.33	8.05	18.9	0.04
03/09/2025 10:00 AM	49.97	7.98	18.9	0.02
03/09/2025 12:00 PM	48.68	7.96	18.9	0.05
03/09/2025 02:00 PM	50.44	7.98	18.9	0.03
03/09/2025 04:00 PM	50.05	7.97	19.0	0.04
03/09/2025 06:00 PM	50.68	7.95	19.9	0.02
03/09/2025 08:00 PM	50.10	8.02	18.9	0.01
03/09/2025 10:00 PM	51.90	8.01	19.1	0.01
03/10/2025 12:00 AM	52.84	8.02	18.5	0.02
03/10/2025 02:00 AM	50.60	7.95	19.1	0.02
03/10/2025 04:00 AM	50.14	8.01	19.0	0.03
03/10/2025 06:00 AM	50.22	8.03	19.0	0.01
03/10/2025 08:00 AM	50.14	8.01	19.0	0.01
03/10/2025 10:00 AM	No effluent	discharge fi	om TKODP di	ie to the plant has stopped
03/10/2025 12:00 PM			production	
03/10/2025 02:00 PM	51.54	8.05	19.0	0.03
03/10/2025 04:00 PM	50.11	8.00	19.0	0.02
03/10/2025 06:00 PM				
03/10/2025 08:00 PM				
03/10/2025 10:00 PM				
03/11/2025 12:00 AM				
03/11/2025 02:00 AM				
03/11/2025 04:00 AM				
03/11/2025 06:00 AM				
03/11/2025 08:00 AM				
03/11/2025 10:00 AM				
03/11/2025 12:00 PM				
03/11/2025 02:00 PM				
03/11/2025 04:00 PM				
03/11/2025 06:00 PM				
03/11/2025 08:00 PM				
03/11/2025 10:00 PM				
03/12/2025 12:00 AM				
03/12/2025 02:00 AM				
03/12/2025 04:00 AM				
03/12/2025 06:00 AM				
03/12/2025 08:00 AM				
03/12/2025 10:00 AM				
03/12/2025 12:00 PM				
03/12/2025 02:00 PM				
03/12/2025 04:00 PM	No effluent	discharge fi		ue to the plant has stopped
03/12/2025 06:00 PM			production	
03/12/2025 08:00 PM				
03/12/2025 10:00 PM				

Date & Time	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)
03/13/2025 12:00 AM				
03/13/2025 02:00 AM				
03/13/2025 04:00 AM				
03/13/2025 06:00 AM				
03/13/2025 08:00 AM				
03/13/2025 10:00 AM				
03/13/2025 12:00 PM				
03/13/2025 02:00 PM				
03/13/2025 04:00 PM				
03/13/2025 06:00 PM				
03/13/2025 08:00 PM				
03/13/2025 10:00 PM				
03/14/2025 12:00 AM				
03/14/2025 02:00 AM				
03/14/2025 04:00 AM				
03/14/2025 06:00 AM				
03/14/2025 08:00 AM				
03/14/2025 10:00 AM				
03/14/2025 12:00 PM				
03/14/2025 02:00 PM				
03/14/2025 04:00 PM			, ,	
03/14/2025 06:00 PM	49.97	8.04	19.0	0.02
03/14/2025 08:00 PM				
03/14/2025 10:00 PM				
03/15/2025 12:00 AM				
03/15/2025 02:00 AM				
03/15/2025 04:00 AM				
03/15/2025 06:00 AM				
03/15/2025 08:00 AM				
03/15/2025 10:00 AM				
03/15/2025 12:00 PM 03/15/2025 02:00 PM				
03/15/2025 04:00 PM				
03/15/2025 06:00 PM				
03/15/2025 08:00 PM				
03/15/2025 10:00 PM				
03/16/2025 12:00 AM				
03/16/2025 02:00 AM				
03/16/2025 04:00 AM				
03/16/2025 06:00 AM				
03/16/2025 08:00 AM				
03/16/2025 10:00 AM				
03/16/2025 12:00 PM				
03/16/2025 02:00 PM				
03/16/2025 04:00 PM				
03/16/2025 06:00 PM				
03/16/2025 08:00 PM				
03/16/2025 10:00 PM				

	Date & Time	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)
	03/17/2025 12:00 AM	No effluent	discharge fi	om TKODP du	ie to the plant has stopped
	03/17/2025 02:00 AM	140 chiache	aischai ge ii	production.	
	03/17/2025 04:00 AM			production	•
ſ	03/17/2025 06:00 AM				
	03/17/2025 08:00 AM				
ſ	03/17/2025 10:00 AM				
ſ	03/17/2025 12:00 PM				
ſ	03/17/2025 02:00 PM				
Ī	03/17/2025 04:00 PM				
ſ	03/17/2025 06:00 PM				
ſ	03/17/2025 08:00 PM				
T	03/17/2025 10:00 PM				
	03/18/2025 12:00 AM				
	03/18/2025 02:00 AM				
	03/18/2025 04:00 AM				
	03/18/2025 06:00 AM				
	03/18/2025 08:00 AM				
	03/18/2025 10:00 AM				
	03/18/2025 12:00 PM				
L	03/18/2025 02:00 PM				
L	03/18/2025 04:00 PM				
ı	03/18/2025 06:00 PM				
ı	03/18/2025 08:00 PM				
ŀ	03/18/2025 10:00 PM				
L	03/19/2025 12:00 AM				
ŀ	03/19/2025 02:00 AM				
L	03/19/2025 04:00 AM				
ŀ	03/19/2025 06:00 AM				
ŀ	03/19/2025 08:00 AM				
ŀ	03/19/2025 10:00 AM	50.05	8.07	19.0	0.02
ŀ	03/19/2025 12:00 PM	51.11	8.05	19.0	0.01
H	03/19/2025 02:00 PM	50.34	8.07	18.6	0.03
H	03/19/2025 04:00 PM	50.11	7.94	19.1	0.01
H	03/19/2025 06:00 PM	49.68	7.93	19.0	0.02
H	03/19/2025 08:00 PM 03/19/2025 10:00 PM	50.00 50.31	8.02 8.03	19.0 19.0	0.04
H	03/20/2025 12:00 AM	51.11	8.00	18.9	0.03
H	03/20/2025 12:00 AM 03/20/2025 02:00 AM	52.01	7.95	19.1	0.04
H	03/20/2025 02:00 AM	51.05	8.01	18.9	0.01
H	03/20/2025 04:00 AM	49.50	7.96	19.1	0.02
H	03/20/2025 08:00 AM	50.10	8.03	19.0	0.02
ŀ	03/20/2025 10:00 AM	50.10	8.00	19.0	0.03
ŀ	03/20/2025 10:00 PM	49.84	7.94	19.1	0.02
ŀ	03/20/2025 12:00 PM	48.84	8.03	19.0	0.01
ı	03/20/2025 04:00 PM	49.87	7.94	19.0	0.03
ı	03/20/2025 06:00 PM	48.55	8.03	19.0	0.01
ı	03/20/2025 08:00 PM	50.14	8.01	18.9	0.02
ı	03/20/2025 10:00 PM	50.31	7.93	19.0	0.01
-					

Total Residual Chlorine Date & Time Sal (ppt) Temp (°C) рН (mg/L) 0.02 03/21/2025 12:00 AM 50.00 8.00 19.0 03/21/2025 02:00 AM 50.38 7.98 19.0 0.03 03/21/2025 04:00 AM 49.98 8.03 19.0 0.04 03/21/2025 06:00 AM 50.31 7.91 19.0 0.02 03/21/2025 08:00 AM 49.55 8.03 19.0 0.03 03/21/2025 10:00 AM 51.05 8.02 19.0 0.01 03/21/2025 12:00 PM 50.25 7.91 19.0 0.02 7.98 19.0 03/21/2025 02:00 PM 51.00 0.03 03/21/2025 04:00 PM 52.05 8.03 19.0 0.01 03/21/2025 06:00 PM 51.03 8.02 19.0 0.05 03/21/2025 08:00 PM 49.98 7.93 19.0 0.04 03/21/2025 10:00 PM 50.05 8.02 19.0 0.03 03/22/2025 12:00 AM 49.85 8.04 19.0 0.02 03/22/2025 02:00 AM 50.51 8.01 18.9 0.01 03/22/2025 04:00 AM 49.65 7.93 18.9 0.01 03/22/2025 06:00 AM 50.54 8.04 19.0 0.02 19.0 03/22/2025 08:00 AM 49.58 8.05 0.03 03/22/2025 10:00 AM 50.11 7.98 19.0 0.04 7.93 19.0 0.03 03/22/2025 12:00 PM 50.31 03/22/2025 02:00 PM 49.95 8.01 19.0 0.02 03/22/2025 04:00 PM 52.55 8.02 18.9 0.01 03/22/2025 06:00 PM 51.48 8.03 19.1 0.05 8.00 19.0 0.04 03/22/2025 08:00 PM 49.48 03/22/2025 10:00 PM 50.01 7.89 19.0 0.03 03/23/2025 12:00 AM 50.11 7.91 19.0 0.02 03/23/2025 02:00 AM 50.48 8.05 18.9 0.01 03/23/2025 04:00 AM 49.85 8.01 18.9 0.02 03/23/2025 06:00 AM 51.05 8.00 19.1 0.03 03/23/2025 08:00 AM 50.65 7.90 19.1 0.02 03/23/2025 10:00 AM 50.05 7.89 19.2 0.03 03/23/2025 12:00 PM 51.58 7.95 19.0 0.04 18.9 0.01 03/23/2025 02:00 PM 51.36 8.05 0.02 03/23/2025 04:00 PM 50.05 8.01 19.1 03/23/2025 06:00 PM 49.85 8.03 19.0 0.03 19.0 0.01 03/23/2025 08:00 PM 50.64 8.00 03/23/2025 10:00 PM 50.47 8.05 19.0 0.01 7.98 03/24/2025 12:00 AM 50.05 19.0 0.02 03/24/2025 02:00 AM 49.89 8.03 19.4 0.03 18.9 03/24/2025 04:00 AM 50.64 8.00 0.01 03/24/2025 06:00 AM 49.87 8.05 19.0 0.02 03/24/2025 08:00 AM 50.31 8.01 19.0 0.01 03/24/2025 10:00 AM 50.22 8.00 19.0 0.02 03/24/2025 12:00 PM 49.88 7.98 19.0 0.05 03/24/2025 02:00 PM 50.14 8.02 19.4 0.04 03/24/2025 04:00 PM 50.00 8.04 19.2 0.03 03/24/2025 06:00 PM 49.98 8.05 19.2 0.01 03/24/2025 08:00 PM 51.04 7.94 19.1 0.02

03/24/2025 10:00 PM

50.58

7.95

19.1

0.01

Contract No. 13/WSD/17. Continuous Effluent Monitoring (March 2025)
Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

Date & Time	Sal (ppt)	рН	Temp (°C)	Total Residual Chlorine (mg/L)
03/25/2025 12:00 AM	50.60	7.91	18.6	0.03
03/25/2025 02:00 AM	50.14	8.05	18.7	0.04
03/25/2025 04:00 AM	49.50	7.98	19.0	0.05
03/25/2025 06:00 AM	50.40	8.05	19.0	0.04
03/25/2025 08:00 AM	50.40	8.04	18.7	0.03
03/25/2025 10:00 AM	50.30	8.05	19.0	0.02
03/25/2025 12:00 PM	49.98	7.98	19.1	0.01
03/25/2025 02:00 PM	50.11	8.00	19.1	0.01
03/25/2025 04:00 PM	49.74	8.02	18.9	0.01
03/25/2025 06:00 PM	49.87	8.01	19.0	0.01
03/25/2025 08:00 PM	50.54	8.00	19.0	0.01
03/25/2025 10:00 PM	50.06	7.98	19.0	0.02
03/26/2025 12:00 AM	48.98	8.03	19.0	0.01
03/26/2025 02:00 AM	49.74	8.01	18.6	0.03
03/26/2025 04:00 AM	50.04	8.05	19.1	0.01
03/26/2025 06:00 AM	50.03	8.05	19.1	0.02
03/26/2025 08:00 AM	49.94	8.00	19.0	0.01
03/26/2025 10:00 AM	50.64	7.90	19.1	0.02
03/26/2025 12:00 PM	50.01	7.80	19.1	0.03
03/26/2025 02:00 PM	50.40	7.95	18.9	0.01
03/26/2025 04:00 PM	50.50	8.05	18.9	0.02
03/26/2025 06:00 PM	50.50	8.01	18.9	0.03
03/26/2025 08:00 PM	50.60	8.06	18.9	0.01
03/26/2025 10:00 PM	50.48	8.20	18.9	0.02
03/27/2025 12:00 AM	51.65	8.10	19.0	0.01
03/27/2025 02:00 AM	51.00	8.00	19.0	0.02
03/27/2025 04:00 AM	51.74	7.98	19.0	0.01
03/27/2025 06:00 AM	50.65	8.05	19.0	0.03
03/27/2025 08:00 AM	51.11	8.00	19.0	0.01
03/27/2025 10:00 AM	49.85	7.94	19.0	0.02
03/27/2025 12:00 PM	50.25	8.04	19.0	0.04
03/27/2025 02:00 PM	50.35	8.02	19.0	0.01
03/27/2025 04:00 PM	50.85	8.03	19.0	0.02
03/27/2025 06:00 PM	51.50	8.00	18.9	0.01
03/27/2025 08:00 PM	50.68	8.01	19.0	0.02
03/27/2025 10:00 PM	50.14	8.02	19.0	0.01
03/28/2025 12:00 AM	No effluent	discharge fr	om TKODP du production	ue to the plant has stopped .
03/28/2025 02:00 AM	50.55	7.88	18.6	0.02
03/28/2025 04:00 AM	49.65	7.90	19.0	0.01
03/28/2025 06:00 AM	50.48	8.05	19.0	0.02
03/28/2025 08:00 AM	50.34	8.00	19.0	0.01
03/28/2025 10:00 AM	50.39	8.01	19.0	0.03
03/28/2025 12:00 PM	50.48	7.89	19.1	0.01
03/28/2025 02:00 PM	50.14	7.94	19.0	0.02
03/28/2025 04:00 PM	49.95	8.01	19.0	0.03
03/28/2025 06:00 PM	50.11	7.89	19.0	0.01
03/28/2025 08:00 PM	50.48	8.06	19.0	0.02
03/28/2025 10:00 PM	50.60	8.01	19.0	0.03

Total Residual Chlorine Date & Time Sal (ppt) рН Temp (°C) (mg/L) 03/29/2025 12:00 AM 50.48 8.02 19.0 0.01 03/29/2025 02:00 AM 49.85 7.87 18.9 0.01 03/29/2025 04:00 AM 20.0 0.04 50.04 8.07 03/29/2025 06:00 AM 19.0 0.01 49.95 8.00 03/29/2025 08:00 AM 8.01 19.0 0.02 50.05 03/29/2025 10:00 AM 8.07 19.0 0.02 51.05 03/29/2025 12:00 PM 49.30 8.02 19.1 0.01 03/29/2025 02:00 PM 49.21 8.03 18.9 0.03 03/29/2025 04:00 PM 49.14 8.05 19.0 0.01 03/29/2025 06:00 PM 49.20 7.94 18.6 0.02 03/29/2025 08:00 PM 49.19 8.04 19.0 0.03 03/29/2025 10:00 PM 49.27 8.06 18.8 0.04 03/30/2025 12:00 AM 49.50 8.01 19.0 0.01 03/30/2025 02:00 AM 49.50 8.02 19.0 0.02 03/30/2025 04:00 AM 49.54 8.03 19.0 0.04 03/30/2025 06:00 AM 49.56 8.01 19.0 0.01 03/30/2025 08:00 AM 49.68 8.02 19.0 0.02 03/30/2025 10:00 AM 49.68 8.03 18.9 0.03 03/30/2025 12:00 PM 49.68 8.00 19.0 0.05 03/30/2025 02:00 PM 49.69 8.00 19.0 0.04 03/30/2025 04:00 PM 49.68 7.98 19.0 0.01 03/30/2025 06:00 PM 49.84 8.02 19.0 0.02 03/30/2025 08:00 PM 49.80 8.07 19.0 0.03 03/30/2025 10:00 PM 49.84 8.01 19.0 0.01 04/01/2025 12:00 AM 50.64 8.01 19.0 0.01

Date & Time	Suspended Solids (mg/L)	Total Inorganic Nitrogen (mg/L)	Total Phosphorus (mg/L)	*Sodium Metabisulphite (mg/L)	Iron (mg/L)									
1/03/2025	<2	0.14	<0.01	<2	<0.1									
2/03/2025	<2	0.18	<0.01	<2	<0.1									
3/03/2025	<2	0.19	0.02	<2	<0.1									
4/03/2025	<2	0.24	0.01	<2	<0.1									
5/03/2025	<2 0.28 0.01 <2 <0.1													
6/03/2025	<2													
7/03/2025	<2	0.29	<0.01	<2	<0.1									
8/03/2025	<2	0.24	<0.01	<2	<0.1									
9/03/2025	<2	0.26	<0.01	<2	<0.1									
10/03/2025														
11/03/2025														
12/03/2025														
13/03/2025														
14/03/2025		No effluent discharge from TKODF	due to the plant has stop	oped production.										
15/03/2025														
16/03/2025														
17/03/2025														
18/03/2025														
19/03/2025	<2	0.16	<0.01	<2	<0.1									
20/03/2025	<2	0.14	<0.01	<2	<0.1									
21/03/2025	<2	0.13	<0.01	<2	<0.1									
22/03/2025	<2	0.1	<0.01	<2										
23/03/2025	<2	0.01	<0.01	<2	<0.1									
24/02/2025														
24/03/2025	<2	0.09	<0.01	<2	<0.1 <0.1 <0.1									
25/03/2025 25/03/2025	<2 <2	0.09 0.07	<0.01 <0.01	<2 <2	<0.1									
					<0.1 <0.1									
25/03/2025	<2	0.07	<0.01	<2	<0.1 <0.1 <0.1									
25/03/2025 26/03/2025	<2 <2	0.07 0.05	<0.01 <0.01	<2 <2	<0.1 <0.1 <0.1 <0.1									
25/03/2025 26/03/2025 27/03/2025	<2 <2 <2	0.07 0.05 0.05	<0.01 <0.01 <0.01	<2 <2 <2	<0.1 <0.1 <0.1 <0.1 <0.1									
25/03/2025 26/03/2025 27/03/2025 28/03/2025	<2 <2 <2 <2	0.07 0.05 0.05 0.08	<0.01 <0.01 <0.01 <0.01	<2 <2 <2 <2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1									

^{*}Remark:

As confirmed by various laboratories in Hong Kong, the lowest detection limit for Sodium Metabisulphite is <2 mg/L.

Due to the limitation of the laboratory, the lowest result for Sodium Metabisulphite will only be shown as < 2 mg/L.

Landfill Gas Monitoring - Field Measurement Recording Sheet

Name of site: Tseung Kwan O Desalination Plant Phase 1

23/4/24.

Sample	Date of	Sampling			Mor	nitoring wells / S	Surface Gas Emi	ssion		
location	measurement	time	Weather condition	Balance gas (%)	Flammable gas (methane %)	Carbon dioxide (%)	Oxygen (%)	Temp °C	Pressure mBar	Remark
MUI-MID	13/3/2028	0700	Sunny	0	D	0.01	20.6	22	1017	
MMI. Buse	13/3/2028	0730	Sunny	0	0	0.91	20.4	2 2	1017	
M42-M.J	13/3/2025	0800	Sunny	0	0	0.01	20.8	22	10 A	
MUZ-Bue	13/3/2025	0835	Sunny	0	Ð	0.01	20.6	22	1017	
M43-Mid	13/3/2028	6900	Supry	Q	0	0-01	20.6	72	1017	
MU3-Base	13/3/200	0945	Sunny	0	₁	0.01	20.8	22	1017	
MU4- Mid	13/3/2025	1030	Sunny	2	2	0.01	20.7	22	1017	
MU4-Bac	13/3/2018	1105	Sunny	0	0	0.01	20.8	22	1017	
Musinia	13/3/225	1140	Enony	0	0	0.01	20.1	22	1017	
MKIBER		1218	Sunny	3	0	0.01	20.6	22	1017	
MUB-Mid	13/3/228	1280	Sunny	0	2	0.01	20.7	12	1017	

Date

Prepared by field operator:

Name & Designation
Nov Mon Rooth
Tanny Law I Im

Signature

13/3/2.28

Checked by:

Landfill Gas Monitoring - Field Measurement Recording Sheet

Name of site: Tseung Kwan O Desalination Plant Phase 1

Sampling equipment used:	Dates calibrated	
Altairsh, 221/05	2314124	

Sample	Date of	Sampling			Mor	nitoring wells / S	Surface Gas Emi	ssion		
location	measurement time Weather Ba		Balance gas	Flammable	Carbon	Oxygen (%)	Temp °C	Pressure	Remark	
			condition	(%)	gas (methane %)	dioxide (%)	300		mBar	
MU6-Base	13/3/2025	1330	Sanny	0	0	8.01	20.8	23	1017	
MN7-N:J	1373/225	1400	Sunny	D	0	0-01	20.7	23	1-17	
MM7-Bax	13/3/22	1440	Gunny	0	0	0.01	21.7	23	1017	
Muz-nid	17/3/228	1510	Sunny	0	0	0.51	20.6	23	1017	
MUB-Base	13/3/2015	1545	Synmy	9	0	0-01	20.8	23	1017	
Mugrhid	13/3/200	11/0	Sunny	Ø	0	0.01	20.7	23	1-17	
MM9-Base	13/5/2025	1680	Sunny	0	0	0.01	20.6	23	1017	
MNDIMIL	13/3/2025	1710	Sunny	ð	0	0.01	20.7	23	1017	
MN10-Base	13/3/2025	1900	Sunny	0	0	0-21	2.8	23	1017	
MUII-NZ	13/3/2015	1030	Suny	0	0	0-01	20.6	23	1017	
Mn11-Back	13/3/2008	1 900	5 mm	9	0	0.01	20.7	25	1.17	

Name & Designation Signature
Norman Kurl Cle
Terry Lan 1944

Prepared by field operator:

Checked by:

Landfill Gas Monitoring - Field Measurement Recording Sheet

Name of site: Tseung Kwan O Desalination Plant Phase 1

Sampling equipment used:	Dates calibrated
Altair84, 221/65	23/4/24
" H H 'B '	

Sample	Date of	Sampling			Moi	nitoring wells / S	Surface Gas Emis	ssion		
location	measurement	time	Weather	Balance gas	Flammable	Carbon	Oxygen (%)	Temp °C	Pressure	Remark
			condition	(%)	gas (methane	dioxide (%)			mBar	
					%)					
MU12 Mid	1+13/2028	0700	Sunny	0	0	0-01	20.7	21	1018	
M412-Bax	14/3/2025	0730	Sunny	0	0	0.01	20.8	21	1018	
MU13-17.2	14/3/2020	0805	Gana	0	0	091	20.7	21	1018	
MH13-Bac	14/3/2×	0340	Sunny	0	Ø	0.01	20.6	21	1018	
MU14-p.d	1413/2025	0915	Sunny	0	0	0001	20.8	22	1019	
MUM-BAR	14/3/2025	2945	Sugar	0	0	001	20.3	21	1018	
M418-Mid	1413/2008	1230	Guny	0	0	0.01	20.6	21	1018	
MN15-Bale	14/3/2025.	11108	Suhy	0	0	0.01	20.8	21	1018	
MHIG-MIJ	14131228	1140	Gunny	0	0	0.01	20.7	21	1013	
MU16-Base	14/3/27	inix	3107	0	0	0-21	20.7	21	,018	
M417- Bac.	14/3/22	,200	5277	0	0	0.01	203.	21	1217	

Date

Prepared by field operator:

Checked by:

Name & Designation Signature
Norman Cack

Tony had 12m

14/3/225

AJC JOINT VENTURE

Landfill Gas Monitoring – Field Measurement Recording Sheet

Name of site: Tseung Kwan O Desalination Plant Phase 1

Dates calibrated
23/4/24

Sample	Date of	Sampling			Mor	nitoring wells / S	Surface Gas Emi	ssion		
location	measurement	time	Weather condition	Balance gas (%)	Flammable gas (methane %)	Carbon dioxide (%)	Oxygen (%)	Temp °C	Pressure mBar	Remark
MHA-WIT	14/3/1028	1340	mon of	0	0	0,21	20.7	21	1019	
172 EU 5-551-72	14/3/2015	1430	Suny	0	C	0.9	20.8	21	1018	
Try Water	14/3/2022	1×30	Suny	0	0	0.01	20.9	2/	1018	
Pany in Station	,		(701	
Ton Water	1413/2018	1607	Sunny	D	D	0-01	20.8	21	1018	
Tank										
chlorier waiter	14/3/22×	1048	5407	0	U	0-21	20-6	21	1019	
Tonk			,							
Sunch Rom	1413/102	1730	Sunn	0	0	6.21	207	71	1019	
StandBy govern	1413/22	1800	Sum	υ	0	0.0]	20-7	21	1018	
& Sull Par										

Name & Designation

Signature

Date

Prepared by field operator:

Checked by:

Tombo I'm

N

1413/2m

Appendix G

Waste Flow Table

Name of Department: WSD Contract No.: 13/WSD/17

Monthly Summary Waste Flow Table for <u>2025</u> (year)

		Actual Quan	tities of Inert C&I	O Materials Generate	ed Monthly			Actual Quantities	of C&D Wastes Ger	nerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	38.740
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	18.330
Mar	30.520	0.000	0.000	0.000	30.520	0.000	0.000	0.000	0.000	0.000	29.050
Apr											
May											
Jun											
Sub-total	30.520	0.000	0.000	0.000	30.520	0.000	0.000	0.000	0.000	0.000	86.120
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	30.520	0.000	0.000	0.000	30.520	0.000	0.000	0.000	0.000	0.000	86.120

Notes:

- (1) The performance targets are given in Section 1.69 of Specification B
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging material

Appendix H

Ecology (Coral) Survey Report

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project, Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (TKODP), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (EP No. FEP 01/503/2015/B) for the construction and operation of the Project.
- 1.1.2 The Jardine Engineering Corporation, Limited, China State Construction Engineering (Hong Kong) Limited and Acciona Agua, S.A. Trading As AJC Joint Venture (AJCJV) is contracted to carry out the Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (TKODP) under Contract No. 13/WSD/17 (the Project).
- 1.1.3 Acuity Sustainability Consulting Limited (ASCL) is commissioned by AJCJV to undertake the Environmental Team (ET) services as required and/or implied, both explicitly and implicitly, in the Environmental Permit (EP), Environmental Impact Assessment Report (EIA Report) (Register No. AEIAR-192/2015) and Environmental Monitoring and Audit Manual (EM&A Manual) for the Project; and to carry out the Environmental Monitoring and Audit (EM&A) programme in fulfillment of the EIA Report's EM&A requirements and Contract No. 13/WSD/17 Specification requirements.
- 1.1.4 The proposed Desalination Plant at Tseung Kwan O (TKODP) will produce potable water with an initial capacity of 135 million litres per day (MLD), expandable to an ultimate capacity of 270 MLD in the future to provide a secure and alternative fresh water resource complying with the World Health Organization (WHO) standards. The plant will adopt the Seawater Reverse Osmosis (SWRO) technology, which dominates the market due to its reliability and progressive reduction in cost as the technology advances.
- 1.1.5 A baseline coral survey was conducted in October 2023 to verify the validity of the pervious EIA findings as well as to provide updated coral data for impact monitoring during the construction and operation phases. Two indirect impact sites and one control site were identified during the baseline coral survey for impact monitoring.

2 Methodology

- 2.1 All tagged coral colonies in C2, C3 and C8 will be monitored monthly during the first year of Project operation. The monitoring team will record the following parameters (using the same methodology adopted during the pre-construction phase survey): size, presence, survival, health conditions (percentage of mortality) and percentage of sediment of each tagged coral colonies. The general environmental conditions during the survey date will also be monitored.
- 2.2 Photographic records of the tagged coral colonies will be taken as far as possible maintaining the same aspect and orientation as photographs taken for the pretranslocation surveys. All the tags for marking coral colonies will be removed / retrieved once the monitoring programme is completed.
- 2.3 The results of the operation phase monitoring surveys should be reviewed with reference to findings of the baseline survey.
- 2.4 If, during the operation phase monitoring, observations of any die-off / abnormal conditions of the tagged corals are made, the ET will inform the Contractor, Independent Environmental Checker (IEC)/ Environmental Project Office (ENPO), Agriculture, Fisheries and Conservation Department (AFCD) and in liaison with AFCD investigate any measures needed.

2.5 Monitoring result will be reviewed and be compared against the Action Level and Limit Level (AL/LL) as set out in Table 2-1. Actions specified on Table 2-2 will be taken by ET, IEC, SOR and Contractor shall there be exceedance of AL/LL

Table 2-1 Action and Limit Levels for Operation Phase Coral Monitoring

I UNIC I	1 11 ction and 2 min 2 c vers for operation 1 mase o	or ur riomtoring
Parameter	Action Level Definition	Limit Level Definition
Mortality	If during Impact Monitoring a 15% increase in	If during Impact Monitoring a 25%
	the percentage of partial mortality on the corals	increase in the percentage of partial
	occurs at more than 20% of the tagged indirect	mortality on the corals occurs at more than
	impact site coral colonies that is not recorded on	20% of the tagged indirect impact site coral
	the tagged corals at the control site, then the	colonies that is not recorded on the tagged
	Action Level is exceeded	corals at the control site, then the Limit
		Level is exceeded

Note: If the defined Action Level or Limit Level for coral monitoring is exceeded, the actions as set out in Table 5-4 will be implemented.

Table 2-2 Event and Action Plan for Operation Phase Monitoring

		2 Event and Action			tion	· · · · · · · · · · · · · · · · · · ·			
Event	ET Leader			IEC		SOR	Contractor		
Action Level	1.	Check monitoring	1.	Discuss monitorin	g 1.	Discuss with the	1.	Inform the SOR	
Exceedance		data		with the ET and th	2	IEC additional		and confirm	
	2.	Inform the IEC,		Contractor;		monitoring		notification of the	
		SOR and	2.	Review proposal	s	requirements		non-compliance in	
		Contractor of the		for additiona	1	and any other		writing;	
		findings;		monitoring and an	7	measures	2.	Discuss with the	
	3.	Increase the		other measure	S	proposed by the		ET and the IEC and	
		monitoring to at		submitted by th	2	ET;		propose measures	
		least once a		Contractor an	1 2.	Make		to the IEC and the	
		month to confirm		advise the SO	2	agreement on		SOR;	
		findings;		accordingly.		the measures to	3.	Implement the	
	4.	Propose				be		agreed measures.	
		mitigation				implemented.		C	
		measures for				-			
		consideration							

Remark: ** The "SOR" is equivalent to the "ER" as defined in the EM&A Manual of the Project

3. Result

3.1 The March 2025 operation phase monitoring were performed on 19th March 2025 for both Indirect Impact Sites and Control Site (Figure 1 and 2); and the weather conditions were summarized in Table 3.1.

Table 3.1 Weather Condition for the March 2025 Operation Phase Monitoring

Date	Condition	Average Underwater Visibility
19 th March 2025	- East force 3 to 4,	0.5 – 1 m
19 Watch 2023	- Sunny period	0.5 – 1 m

- 3.2 Ten (10) hard coral colonies in C2, C3 and C8 were monitored at each site of Control and Indirect Impact sites as suggested in the Operation Phase Monitoring Plan. The general health conditions (size, mortality, bleaching and sediment) were recorded and summarized in Table 3.2, Table 3.3 and Table 3.4 Photos of each tagged coral colonies were taken during the monitoring activities and shown in Appendix A (Photo Plate A, B and C).
- 3.3 Coral #1 was missing in Site C2 and a new coral colony *Dipsastreaa speciosa* was tagged to replace the missing one. In Site C3, coral #11, #17 and #18 was recorded with 40%, 10% and 10% mortality respectively. All other tagged coral colonies showed good health condition during the March 2025 Monitoring survey.

Table 3.2 Sizes, Condition, Mortality, Bleaching and Sediment of 10 Natural Coral

Colonies at Control Site C8 during March 2025 Coral Monitoring Survey

Tag#	Species	Size (cm) – Max. Diameter	Condition	Mortal	Mortality (%)		Bleaching (%)		ent (%)
				Baseline	19-Mar	Baseline	19-Mar	Baseline	19-Mar
1	Favites pentagona	75	Good	0	0	0	0	0	0
2	Porites lutea	64	Good	0	0	0	0	0	0
3	Plesiastrea versipora	38	Good	0	0	0	0	0	0
4	Platygyra carnosus	35	Good	0	0	0	0	0	0
5	Acropora solitaryensis	39	Good	0	0	0	0	0	0
6	Plesiastrea versipora	31	Good	0	0	0	0	0	0
7	Porites lutea	40	Good	0	0	0	0	0	0
8	Favites pentagona	24	Good	0	0	0	0	0	0
9	Platygyra carnosus	29	Good	0	0	0	0	0	0

	10	Acropora solitaryensis	34	Good	0	0	0	0	0	0	
--	----	---------------------------	----	------	---	---	---	---	---	---	--

Table 3.3 Sizes, Condition, Mortality, Bleaching and Sediment of 10 Natural Coral Colonies at Indirect Impact Site C2 during March 2025 Coral Monitoring Survey

Tag#	Species	Size (cm) - Max. Diameter	Condition	Mortality (%)		Bleaching (%)		Sediment (%)	
				Baseline	19-Mar	Baseline	19-Mar	Baseline	19-Mar
1#	Dipsastraea speciosa	18	Good	0	0	0	0	0	0
2	Favites abdita	43	Good	0	0	0	0	0	0
3	Duncanopsammia peltata	48	Good	0	0	0	0	0	0
4	Dipsastraea veroni	22	Good	0	0	0	0	0	0
5	Favites pentagona	23	Good	0	0	0	0	0	0
6	Plesiastrea versipora	23	Good	0	0	0	0	0	0
7	Dipsastraea rotumana	27	Good	0	0	0	0	0	0
8	Dipsastraea speciosa	20	Good	0	0	0	0	0	0
9	Porites lutea	42	Good	0	0	0	0	0	0
10	Porites lutea	43	Good	0	0	0	0	0	0

#newly tagged coral colony

Table 3.4 Sizes, Condition, Mortality, Bleaching and Sediment of 10 Natural Coral Colonies at Indirect Impact Site C3 during March 2025 Coral Monitoring Survey

Tag#	Species	Size (cm) - Max. Diameter	Condition	Mortal		Bleachi		Sedime	
				Baseline	19-Mar	Baseline	19-Mar	Baseline	19-Mar
11	Acropora solitaryensis	39	Fair	0	40	0	0	0	0
12	Platygyra carnosa	32	Good	0	0	0	0	0	0
13	Favites pentagona	34	Good	0	0	0	0	0	0
14	Platygyra carnosa	26	Good	0	0	0	0	0	0
15	Dipsastraea veroni	25	Fair	0	0	0	0	0	0
16	Favites flexuosa	21	Good	0	0	0	0	0	0

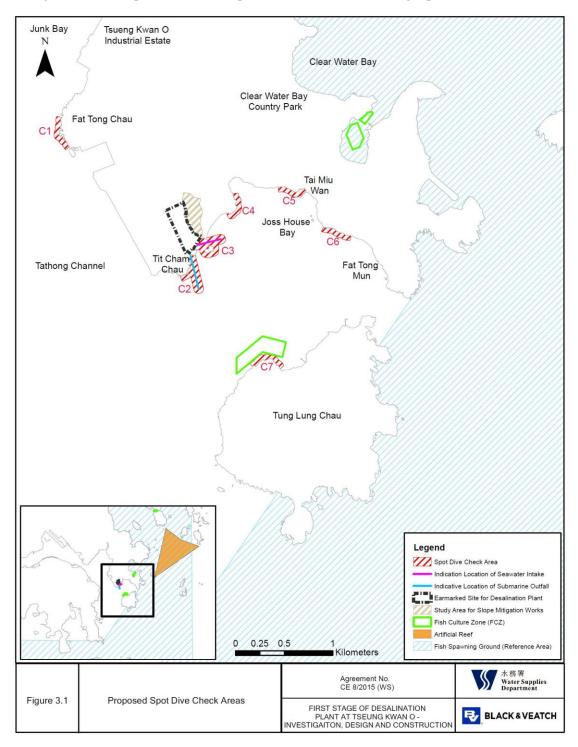
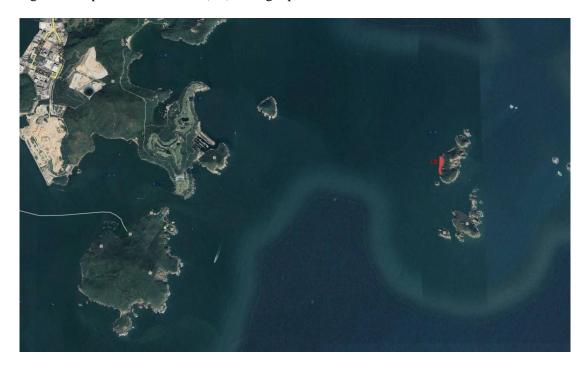
17	Favites chinensis	57	Good	0	10	0	0	0	0
18	Plesiastrea versipora	24	Good	0	10	0	0	0	0
19	Duncanopsammia peltata	32	Good	0	0	0	0	0	0
20	Platygyra carnosus	26	Good	0	0	0	0	0	0

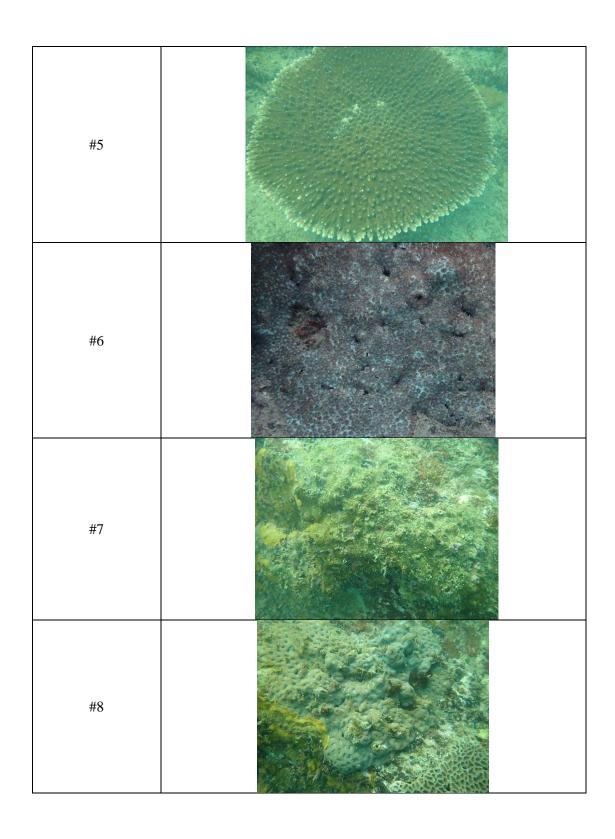
#newly tagged coral colony

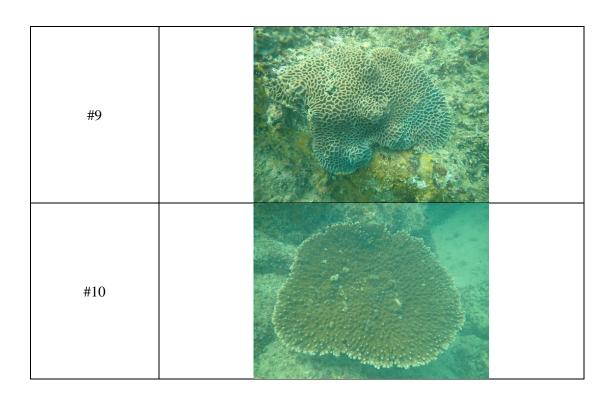
4. Discussion and Conclusion

- 4.1 The March 2025 coral monitoring survey were carried out in the indirect impact area (C2 and C3) and control site (C8) on 19th March 2025. A total of 30 tagged coral colonies (10 at control site and 20 and two indirect impact sites) were monitored. Except missing coral in Site C2 and 3 coral colonies with mortality in Site C3, all other coral colonies were good in general.
- 4.2 No sediment, bleaching or increased mortality in the general condition of all other tagged coral colonies were observed during the monthly operation phase monitoring period. No deterioration of the coral community was observed in the ecological monitoring results when compared with the baseline ecological monitoring results. There is no AL/LL exceedance during the monitoring period. Photos of each tagged corals colonies were taken and shown in Appendix A (Photo Plates A, B and C).

Figure 1 Two Proposed Indirect Impact Sites (C2 and C3) during Operation Phase

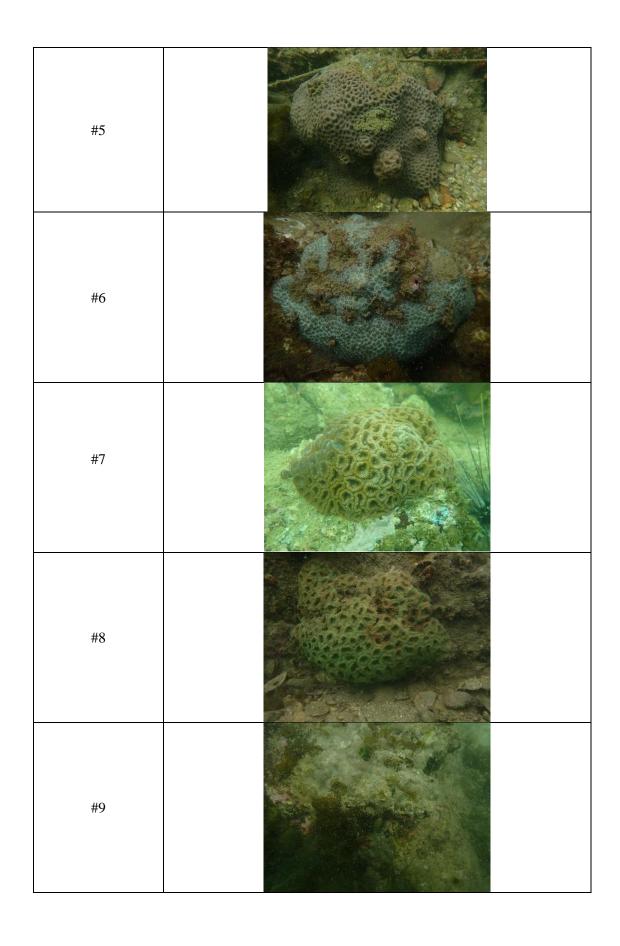



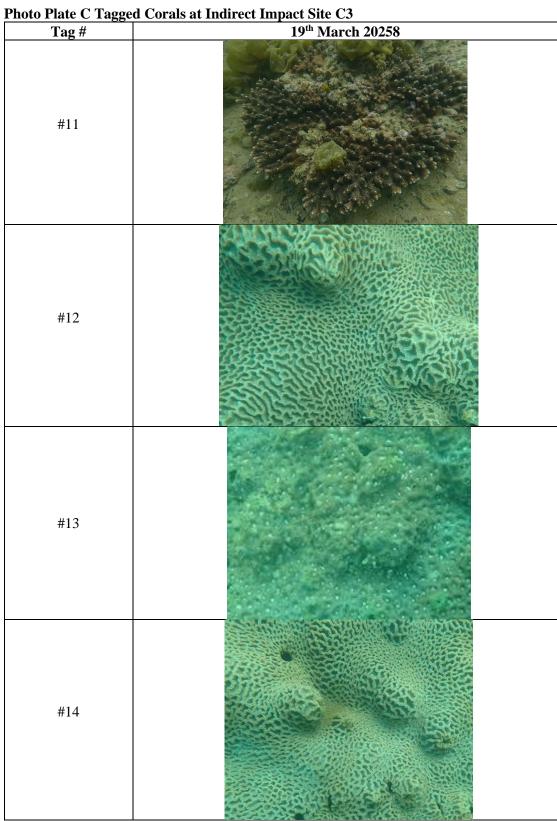

Figure 2 Proposed Control Site (C8) during Operation Phase

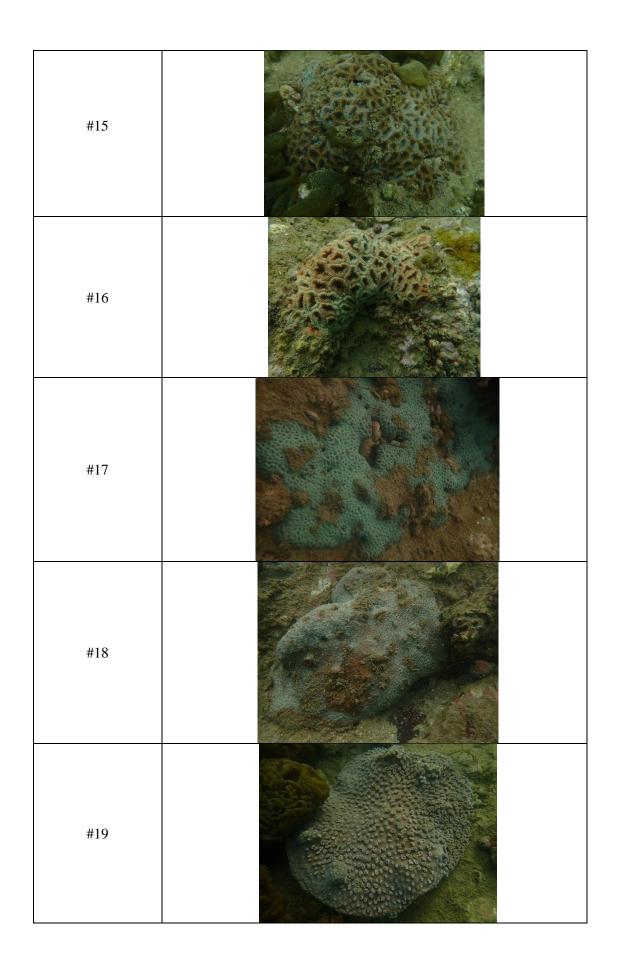


APPENDIX A TAGGED CORAL PHOTO

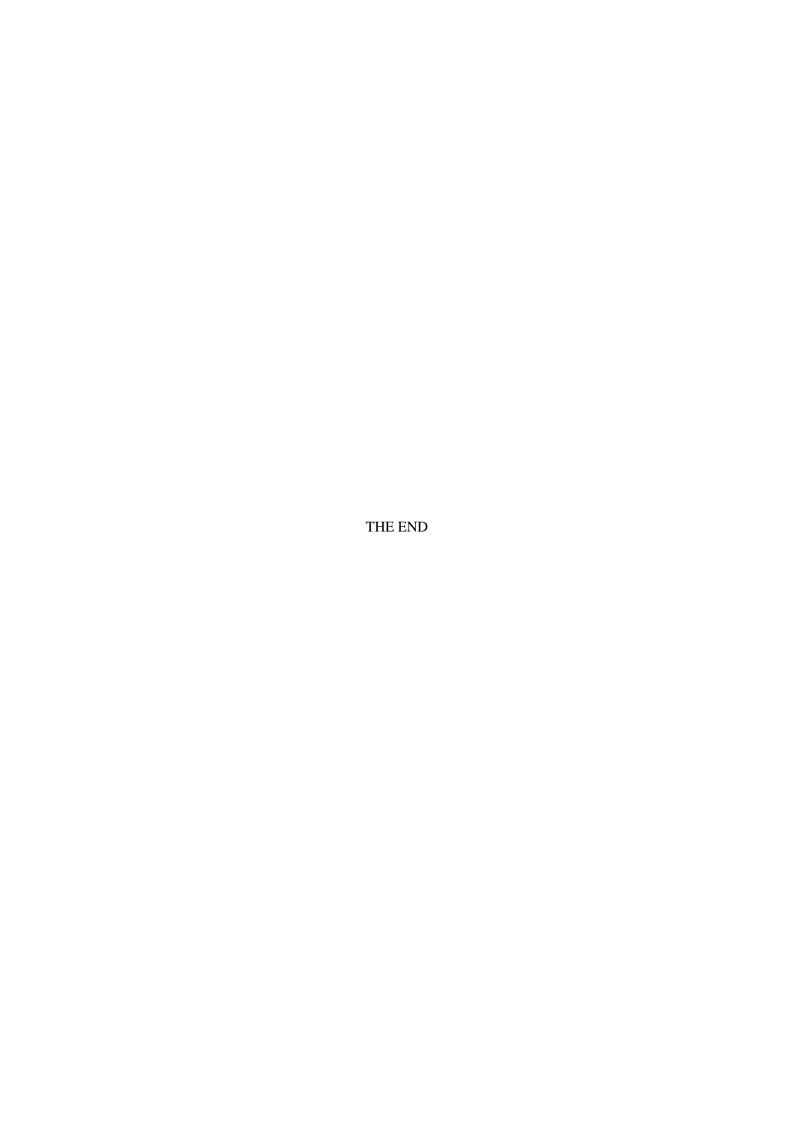
Photo Plate A Tagged Corals at Control Site C8


Tag #	ed Corals at Control Site C8 19 th March 2025
#1	
#2	
#3	
#4	




٠.

Tag#	Corals at Indirect Impact Site C2 19 th March 2025
#1	
#2	
#3	
#4	



Appendix I

Site Inspection Proforma

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspecti	on Date:	05/03/2025	Inspected by:		oby Wan		rek Lai	WSD:	
Inspecti	on Time:1	4:30		Contractor:I	ommy Law	IEC:			
Weath	er								
Condit	ion	√ Sunny Fine	Overcast	Drizzle	Rain	Storm	На	azy	
Tempe	rature	19 °C	Humidity	High	Moderate	✓ Low			
Wind		Calm J Light	Breeze	Strong					
Item No.	EIA ref.					N/A	Yes	No	Photo/Remarks
0.00	General								
0.01		Is the current Environmental Perr	nit displayed co	nspicuously at	all vehicle site	1—			
		entrances/exits for public's inform	nation at any tin	ne?			✓		
0.02		Is ET Leader's log-book kept read	dily available fo	r inspections?			√		
1.00	Air Qualit	y					·		
1.01	S4.8.2	Is the the treatment and storage of structure?	f the chemical sl	ludge enclosed	inside building		√		
1.02	S4.8.2	Is the sludge treatment equippe	d Forced ventil	ation system	with sufficient air	.			
1.02	51.0.2	change rate?	a roicea venti	action by stern	with sufficient un	✓			
1.03	S4.8.2	Is the exhaust discharge directed	away from ASR	s as far as prac	ticable?		√		
1.04	S4.8.2	Is the chemical sludge produced a	at the desalination	on plant remove	ed off-site regularl	у			
		to avoid accumulation of potentia	lly odourous ma	aterials on site?	•		√		
1.05	S4.8.2	Is dewatered sludge to landfill ha nuisance to nearby ASRs?	ndled and transp	orted properly	to minimise odou	r	/		
1.06	S4.8.2	Are the trucks fully enclosed duri	ng transporting	the dewatered	sludge to the				
1.00	54.0.2	landfill to minimise any off-site of			_		✓		
2.00	Waste Ma	nagement							
2.02	S8.5.2	Is a recording system implemente recycled and disposed of?	ed to record the	amount of wast	es generated,		√		
2.03	S8.5.2	Is a trip-ticket system implement public filling facilities and landfil		the disposal	of solid wastes at	i 🗸			
2.04	S8.5.2	Is the Contractor registered as a c		oroducer?			√		
2.05	S8.5.2	Is chemical waste separated from waste collector?	other waste and	collected by a	licensed chemical		√		
2.06	S8.5.2	Are trip tickets for chemical wast	e disposal availa	able for inspect	ion?	✓			
2.07	S8.5.2	Is drip tray provided for chemical	storage?				√		
2.08	S8.5.2	Are all containers for chemical w	aste properly lab	pelled?			√		
2.09	S8.5.2	Is chemical waste storage area use properly labelled?	ed solely for sto	rage of chemic	al waste and		√		
		l							

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
2.10	S8.5.2	Are incompatible chemical wastes stored in different areas?		√		
2.11	S8.5.2	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		√		
2.12	S8.5.2	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		√		
2.13	S8.5.2	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		√		
2.14	S8.5.2	Are sufficient general refuse disposal/collection points provided on site?		√		
2.15	S8.5.2	Is general refuse disposed of properly and regularly?		√		
2.16	S8.5.2	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?		√		
2.17	S8.5.2	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?		√		
2.18	S8.5.2	Is the dewatered sludge met the minimum dry solid content (30%) in the to be disposed of at landfills?		√		
2.19	S8.5.2	Is a dumping license obtained to deliver public fill to public filling areas?	√			
3.00	Landscape	and Visual				
	S11.10 & 11.11	Are Is site hoarding provided?		√		
3.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		√		
3.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?		√		
3.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?		√		
	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		√		
	S11.10 & 11.11	Are excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?	√			
	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		√		
	S11.10 & 11.11	Are surgery works carried out for damaged trees?	\			
4.00		Landfill Gas Hazard				
4.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?		√		
4.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?				
4.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?				

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04		Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?		√		
4.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?		√		
4.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		√		
4.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?		√		
4.08		Is the drilling proceeded with adequate care and precautions against the potential hazards?		√		
4.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?	√			
4.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?		√		
4.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?		√		
4.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		√		
5.00		Overall				
5.01		Is the EM&A properly implemented in general?		√		

Remark / Follow up of Observat	ion(s) and Non-compliance(s)	of Last Weekly Site Inspection	on:	
Site Inspection	- Date 25 A	larch 2025		
No major o	bservatum wa	s fund de	ij site	inspelm
Signatures:			TPG	HICD!
ET Representative	Contractor's Representative	Supervising Officer's Representative	IEC's Representative	WSD's Representative
(Name: Toby Wan)	(Name: Low)	(Name: Refer ()	(Name:) (Name:

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspect	ion Date:1	1/03/2025 Inspected by: ET: Toby Wan			rek Lai	WSD:	
Inspect	ion Time: _ 1	4:30 Contractor: Tommy Law		IEC:			
Weath	er						
Condit	ion	✓ Sunny Fine Overcast Drizzle Rain		Storm	На	azy	
Tempe	rature	18 °C Humidity High Mode	erate	✓ Low			
Wind		Calm Jeight Breeze Strong					
Item No.	EIA ref.			N/A	Yes	No	Photo/Remarks
0.00	General						
0.01		Is the current Environmental Permit displayed conspicuously at all vehicle si	ite				
		entrances/exits for public's information at any time?			√		
0.02		Is ET Leader's log-book kept readily available for inspections?					
1.00	Air Qualit	v					
	S4.8.2		ina				
1.01	34.8.2	Is the the treatment and storage of the chemical sludge enclosed inside buildi structure?	ing		✓		
1.02	S4.8.2	Is the sludge treatment equipped Forced ventilation system with sufficie	ent air				
		change rate?		✓			
1.03	S4.8.2	Is the exhaust discharge directed away from ASRs as far as practicable?			√		
1.04	S4.8.2	Is the chemical sludge produced at the desalination plant removed off-site re	gularly				
		to avoid accumulation of potentially odourous materials on site?			√		
1.05	S4.8.2	Is dewatered sludge to landfill handled and transported properly to minimise	odour				
		nuisance to nearby ASRs?					1
1.06	S4.8.2	Are the trucks fully enclosed during transporting the dewatered sludge to the landfill to minimise any off-site odour impact during the transportation process.			✓		
2.00	Waste Ma						
2.02	S8.5.2	Is a recording system implemented to record the amount of wastes generated	l,				
		recycled and disposed of?			✓		
2.03	S8.5.2	Is a trip-ticket system implemented to monitor the disposal of solid was public filling facilities and landfills?	stes at	√			
2.04	S8.5.2	Is the Contractor registered as a chemical waste producer?			√		
2.05	S8.5.2	Is chemical waste separated from other waste and collected by a licensed chewaste collector?	emical		√		
2.06	S8.5.2	Are trip tickets for chemical waste disposal available for inspection?		√			
2.07	S8.5.2	Is drip tray provided for chemical storage?			√		
2.08	S8.5.2	Are all containers for chemical waste properly labelled?			√		
2.09	S8.5.2	Is chemical waste storage area used solely for storage of chemical waste and properly labelled?			√		-

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
2.10	S8.5.2	Are incompatible chemical wastes stored in different areas?		√		
2.11	S8.5.2	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		√		
2.12	S8.5.2	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		√		
2.13	S8.5.2	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		√		
2.14	S8.5.2	Are sufficient general refuse disposal/collection points provided on site?		√		
2.15	S8.5.2	Is general refuse disposed of properly and regularly?		√		
2.16	S8.5.2	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?		√		
2.17	S8.5.2	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?		√		
2.18	S8.5.2	Is the dewatered sludge met the minimum dry solid content (30%) in the to be disposed of at landfills?		√		
2.19	S8.5.2	Is a dumping license obtained to deliver public fill to public filling areas?	√			
3.00	Landscape	and Visual				
	S11.10 & 11.11	Are Is site hoarding provided?		√		
3.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		√		
3.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?		√		
3.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?		√		
	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		√		
	S11.10 & 11.11	Are excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?	√			
	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		√		
	S11.10 & 11.11	Are surgery works carried out for damaged trees?	\			
4.00		Landfill Gas Hazard				
4.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?		√		
4.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?				
4.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?				

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04		Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?		√		
4.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?		√		
4.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		√		
4.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?		√		
4.08		Is the drilling proceeded with adequate care and precautions against the potential hazards?		√		
4.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?	√			
4.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?		√		
4.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?		√		
4.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		√		
5.00		Overall				
5.01		Is the EM&A properly implemented in general?		√		

Rem	ark / Follow up of	Observati	ion(s) and Non-complia	ance(s) of	Last Weekly Site In	nspection	on:		esphares Ave.	
	Site la	nspect	Ion Date:	l(March z	كرعم				
	No m) • (ئە	observation	Was	found	di	ung site	1,	ispection.	
							•			
	Signatures:									
	ET Representative	/	Contractor's Representative		upervising Office epresentative)'s	IEC's Representative		WSD's Representative	
	Tue)		16,		$\frac{1}{2}\left(\frac{1}{2}\right)$	ſ				
	(Name:	War)	(Name:	1) (1	Name:	()	(Name:)	(Name:)

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspecti	ion Date:1	8/03/2025 Inspected by: ET: Toby Wan		rek Lai	WSD:	
Inspecti	ion Time:1	4:30 Contractor: Tommy Law	IEC:			
Weath	er					
Condit	ion	✓ Sunny Fine Overcast Drizzle Rain	Storm	На	zy	
Tempe	rature	18 °C Humidity High Moderate	Low			
Wind		Calm Calm Breeze Strong				
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
0.00	General					
0.01		Is the current Environmental Permit displayed conspicuously at all vehicle site				
		entrances/exits for public's information at any time?		√		
0.02		Is ET Leader's log-book kept readily available for inspections?		√		
1.00	Air Qualit	v				
	S4.8.2	Is the the treatment and storage of the chemical sludge enclosed inside building				
1.01	54.0.2	structure?		✓		
1.02	S4.8.2	Is the sludge treatment equipped Forced ventilation system with sufficient air				
		change rate?				
1.03	S4.8.2	Is the exhaust discharge directed away from ASRs as far as practicable?				
				✓		
1.04	S4.8.2	Is the chemical sludge produced at the desalination plant removed off-site regularly		√		
		to avoid accumulation of potentially odourous materials on site?				
1.05	S4.8.2	Is dewatered sludge to landfill handled and transported properly to minimise odour				
1.00	04.0.0	nuisance to nearby ASRs?				
1.06	S4.8.2	Are the trucks fully enclosed during transporting the dewatered sludge to the landfill to minimise any off-site odour impact during the transportation process?		✓		
2.00	Waste Mar					
2.02	S8.5.2	Is a recording system implemented to record the amount of wastes generated,				
		recycled and disposed of?		✓		
2.03	S8.5.2	Is a trip-ticket system implemented to monitor the disposal of solid wastes at				
		public filling facilities and landfills?	 			
2.04	S8.5.2	Is the Contractor registered as a chemical waste producer?		✓		
2.05	S8.5.2	Is chemical waste separated from other waste and collected by a licensed chemical				
		waste collector?		<u> </u>		
2.06	S8.5.2	Are trip tickets for chemical waste disposal available for inspection?	√			
2.07	S8.5.2	Is drip tray provided for chemical storage?		√		
2.08	S8.5.2	Are all containers for chemical waste properly labelled?		√		
2.09	S8.5.2	Is chemical waste storage area used solely for storage of chemical waste and				
		properly labelled?		. ✓		

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
2.10	S8.5.2	Are incompatible chemical wastes stored in different areas?		√		
2.11	S8.5.2	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		√		
2.12	S8.5.2	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		√		
2.13	S8.5.2	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		√		
2.14	S8.5.2	Are sufficient general refuse disposal/collection points provided on site?		√		
2.15	S8.5.2	Is general refuse disposed of properly and regularly?		√		
2.16	S8.5.2	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?		√		
2.17	S8.5.2	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?		√		
2.18	S8.5.2	Is the dewatered sludge met the minimum dry solid content (30%) in the to be disposed of at landfills?		√		
2.19	S8.5.2	Is a dumping license obtained to deliver public fill to public filling areas?	√			
3.00	Landscape	and Visual				
	S11.10 & 11.11	Are Is site hoarding provided?		√		
3.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		√		
3.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?		√		
3.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?		√		
	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		√		
	S11.10 & 11.11	Are excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?	√			
	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		√		
	S11.10 & 11.11	Are surgery works carried out for damaged trees?	\			
4.00		Landfill Gas Hazard				
4.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?		√		
4.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?				
4.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?				

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04		Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?		√		
4.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?		√		
4.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		√		
4.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?		√		
4.08		Is the drilling proceeded with adequate care and precautions against the potential hazards?		√		
4.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?	√			
4.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?		√		
4.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?		√		
4.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		√		
5.00		Overall				
5.01		Is the EM&A properly implemented in general?		√		

Remark / Fol	llow up of Obse	rvation(s) and Non-compliance	ee(s) of Last Weekly Site Inspec	tion:		
Site	Inspection	en Date: 1	& March 2025			
No	major	observation was	found duin	y site inspec	tim.	
				3		
Signa	itures:					
ET Repre	esentative	Contractor's Representative	Supervising Officer's Representative	IEC's Representative	WSD's Representative	
(Nam	om Wa	Name: In W	(Name:). (Name:) (Name:)

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspecti	ion Date:2	25/03/2025	Inspected by:		ack Chow		SO: <u>Derek Lai</u> WSD: <u>Jack Wai</u> IEC: Serena Shek					
Inspecti	ion Time:	9:15		Contractor:	lommy Law	IEC:Se	iena Snek					
Weath	er											
Condit	ion	√ Sunny Fine	Overcast	Drizzle	Rain	Storm	На	nzy				
Tempe	rature	23 °C	Humidity	√ High	Moderate	Low						
Wind		Calm Light	Breeze	Strong								
Item No.	EIA ref.					N/A	Yes	No	Photo/Remarks			
0.00	General	<u> </u>										
0.01		Is the current Environmental Perr	nit displayed co	nspicuously at	all vehicle site							
		entrances/exits for public's information	nation at any tir	ne?			✓		-			
0.02		Is ET Leader's log-book kept read	dily available fo	or inspections?			√					
1.00	Air Quali	ty										
1.01	S4.8.2	Is the the treatment and storage o structure?	f the chemical s		√							
1.02	S4.8.2	Is the sludge treatment equippe	d Forced venti	lation system	with sufficient air	+						
		change rate?										
1.03	S4.8.2	Is the exhaust discharge directed	away from ASR	es as far as prac	cticable?		√					
1.04	S4.8.2	Is the chemical sludge produced a	at the desalination	on plant remov	ed off-site regularl	у						
		to avoid accumulation of potentia	ally odourous ma	aterials on site	?							
1.05	S4.8.2	Is dewatered sludge to landfill ha nuisance to nearby ASRs?	ndled and transp		√							
1.06	S4.8.2	Are the trucks fully enclosed duri	ng transporting	the dewatered	sludge to the	+ $-$						
		landfill to minimise any off-site of	dour impact du	ring the transpo	ortation process?		✓					
2.00	Waste Ma	nagement										
2.02	S8.5.2	Is a recording system implemente recycled and disposed of?	ed to record the	amount of was	tes generated,		√					
2.03	S8.5.2	Is a trip-ticket system implement public filling facilities and landfil		the disposal	of solid wastes at	√						
2.04	S8.5.2	Is the Contractor registered as a c		oroducer?								
2.05	S8.5.2	Is chemical waste separated from	other waste and	d collected by a	licensed chemical							
		waste collector?		·			✓					
	S8.5.2	Are trip tickets for chemical wast	_	able for inspect	tion?	✓						
2.07	S8.5.2	Is drip tray provided for chemical	storage?				✓					
2.08	S8.5.2	Are all containers for chemical w	aste properly la	belled?			√					
2.09	S8.5.2	Is chemical waste storage area us properly labelled?	ed solely for sto	orage of chemic	al waste and		√					
		<u> </u>										

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
2.10	S8.5.2	Are incompatible chemical wastes stored in different areas?		√		
2.11	S8.5.2	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		√		
2.12	S8.5.2	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		√		
2.13	S8.5.2	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		√		
2.14	S8.5.2	Are sufficient general refuse disposal/collection points provided on site?		√		
2.15	S8.5.2	Is general refuse disposed of properly and regularly?		√		
2.16	S8.5.2	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?		√		
2.17	S8.5.2	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?		√		
2.18	S8.5.2	Is the dewatered sludge met the minimum dry solid content (30%) in the to be disposed of at landfills?		√		
2.19	S8.5.2	Is a dumping license obtained to deliver public fill to public filling areas?	√			
3.00	Landscape	and Visual				
	S11.10 & 11.11	Are Is site hoarding provided?		√		
3.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		√		
3.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?		√		
3.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?		√		
	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		√		
	S11.10 & 11.11	Are excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?	√			
	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		√		
	S11.10 & 11.11	Are surgery works carried out for damaged trees?	\			
4.00		Landfill Gas Hazard				
4.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?		√		
4.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?				
4.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?				

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04		Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?		√		
4.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?		√		
4.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		√		
4.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?		√		
4.08		Is the drilling proceeded with adequate care and precautions against the potential hazards?		√		
4.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?	√			
4.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?		√		
4.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?		√		
4.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		√		
5.00		Overall				
5.01		Is the EM&A properly implemented in general?		√		

Rem	eark/Follow up of Observante inspection date	ation(s) and Non-compliance(s	s) of Last Weekly Site Inspect	ion:	
1		c . joes / 3/ 23			
	Vt (
	Signatures:				
	ET	Contractor's	Supervising Officer's	IEC's	WSD's
	Representative	Representative	Representative	Representative	Representative
			\mathcal{Y}	20tr	6
	(Name: Jack Chow)	(Name: Jan La)	(Name:	(Name: Spena Shelt)	(Name: Tack 1 A7)

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspecti	on Date:3	1/03/2025	Inspected by:		Toby Wan		SO: WSD:					
Inspecti	on Time:1	4:30		Contractor:	Tommy Law	IEC:						
Weath	er											
Condit	ion	√ Sunny Fine	Overcast	Drizzle	Rain	Storm	На	nzy				
Tempe	rature	14 ⁰ C	Humidity	✓ High	Moderate	Low						
Wind		Calm	Breeze	Strong								
Item No.	EIA ref.					N/A	Yes	No	Photo/Remarks			
0.00	General											
0.01		Is the current Environmental Perr	nit displayed co	nspicuously at	all vehicle site	1_						
		entrances/exits for public's inforr	nation at any tir		✓		-					
0.02		Is ET Leader's log-book kept read	dily available fo	or inspections?			√					
1.00	Air Qualit	<u> </u>										
	S4.8.2	Is the the treatment and storage of	f the chemical s	ludge enclosed	l inside building	+						
-10-	52	structure?			✓	Ш						
1.02	S4.8.2	Is the sludge treatment equippe	d Forced venti	lation system	with sufficient air							
		change rate?										
1.03	S4.8.2	Is the exhaust discharge directed	away from ASR	es as far as pra	cticable?		/					
1.04	S4.8.2	Is the chemical sludge produced a	at the desalination	on plant remov	ed off-site regularl	v						
	52	to avoid accumulation of potentia			✓							
1.05	S4.8.2	Is dewatered sludge to landfill ha	ndled and transp	ported properly	to minimise odou	r						
		nuisance to nearby ASRs?					✓					
1.06	S4.8.2	Are the trucks fully enclosed duri	ng transporting	the dewatered	sludge to the							
		landfill to minimise any off-site of	dour impact du	ring the transp	ortation process?							
2.00	Waste Ma	nagement										
2.02	S8.5.2	Is a recording system implemente	ed to record the	amount of was	tes generated,							
		recycled and disposed of?										
2.03	S8.5.2	Is a trip-ticket system implement public filling facilities and landfil		the disposal	of solid wastes at	t						
2.04	S8.5.2	Is the Contractor registered as a c	hemical waste p	oroducer?			√					
2.05	S8.5.2	Is chemical waste separated from	other waste and									
		waste collector?					✓					
2.06	S8.5.2	Are trip tickets for chemical wast	e disposal avail	able for inspec	tion?	✓						
2.07	S8.5.2	Is drip tray provided for chemical	storage?				✓					
2.08	S8.5.2	Are all containers for chemical w	aste properly la	belled?		\top						
2.09	S8.5.2	Is chemical waste storage area us	ed solely for eto	rage of chamic	ral waste and	+ 🖳	_ن					
۵.07	JU.J.2	properly labelled?	ca solely 101 810	rage of elletille	on waste and		✓					
		<u> </u>				_1						

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
2.10	S8.5.2	Are incompatible chemical wastes stored in different areas?		√		
2.11	S8.5.2	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		✓		
2.12	S8.5.2	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		√		
2.13	S8.5.2	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		√		
2.14	S8.5.2	Are sufficient general refuse disposal/collection points provided on site?		√		
2.15	S8.5.2	Is general refuse disposed of properly and regularly?		√		
2.16	S8.5.2	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?		√		
2.17	S8.5.2	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?		√		
2.18	S8.5.2	Is the dewatered sludge met the minimum dry solid content (30%) in the to be disposed of at landfills?		✓		
2.19	S8.5.2	Is a dumping license obtained to deliver public fill to public filling areas?	\			
3.00	Landscape	and Visual				
3.01	S11.10 & 11.11	Are Is site hoarding provided?		√		
	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		√		
3.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?		√		
	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?		√		
	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		√		
	S11.10 & 11.11	Are excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?	✓			
	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		√		
	S11.10 & 11.11	Are surgery works carried out for damaged trees?	✓			
4.00		Landfill Gas Hazard				
4.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?		√		
4.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?		√		
4.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?		✓		

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04		Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?		√		
4.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?		√		
4.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		√		
4.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?		√		
4.08		Is the drilling proceeded with adequate care and precautions against the potential hazards?		√		
4.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?	√			
4.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?		√		
4.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?		√		
4.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		√		
5.00		Overall				
5.01		Is the EM&A properly implemented in general?		√		

Rem	ark / Follo	w up of Obser	vation(s) and Non-o	compliance(s) of Last Weekl	y Site Inspecti	ion:			
7	Site	Inspection	n Date:	31 M	arch zoz	5				
	N.	majo1	abseruntla.	was	found	dung	site ;	rspectu	٠.	
			.6	- n		The same of the sa	at the clave -	and in	9	- Long II
	Signatu	ires:		Y		The art - to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2498		Carrie Carrie
	ET Represe	mative	Contractor's Representation	2	Supervising Representati		IEC's Represent	ative	WSD's Representative	
	(Name.	The lala) (Name: 1	(1)	(Name! Ch	ú Fan)	(Name:)	(Name:)

Appendix J

Complaint Log

Statistical Summary of Environmental Complaints

D .: D . I	En	vironmental Complai	nt Statistics
Reporting Period	Frequency	Cumulative	Complaint Nature
1 – 31 Mar 2025	0	2	N/A

Statistical Summary of Environmental Summons

Donastina David	Environmental Summons Statistics							
Reporting Period	Frequency	Cumulative	Details					
1 – 31 Mar 2025	0	0	N/A					

<u>Statistical Summary of Environmental Prosecution</u>

D D	Environmental Prosecution Statistics							
Reporting Period	Frequency	Cumulative	Details					
1 – 31 Mar 2025	0	0	N/A					

Appendix K

Exceedance Report (s)

Bi-Weekly Incident Report on Action Level or Limit Level Non-Compliance

Date of	Monitoring Station	Tide	Parameter	Measurement Result	Sampling	Depth Average Result		on Level		it Level mg/L)	Exceedance	Marine construction activities with	Exceedance related to	R	easor		non-pro		elated	
exceedance	Station			(mg/L)	depth	(mg/L)	95%- ile	Control 120%	99%- ile	Control 130%		contact with water (Y/N)	Project (Y/N)	(1)	2)	(3)	(4)	(5)	(6)	(7)
	WSR2	Flood	Suspended Solid (SS)			3.67	5.00	3.40	6.00	3.68	Action Level	N	N		/			✓	✓	✓
	WSR3	Flood	Suspended Solid (SS)			4.50	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
	WSR4	Flood	Suspended Solid (SS)			4.33	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
	WSR16	Flood	Suspended Solid (SS)			3.83	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
04/3/2025	WSR33	Flood	Suspended Solid (SS)			3.83	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
04/3/2023	WSR36	Flood	Suspended Solid (SS)			4.17	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
	WSR37	Flood	Suspended Solid (SS)			4.00	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
	NF1	Flood	Suspended Solid (SS)			3.67	5.00	3.40	6.00	3.68	Action Level	N	N		/			✓	✓	✓
	NF2	Flood	Suspended Solid (SS)			3.50	5.00	3.40	6.00	3.68	Action Level	N	N		/			✓	✓	✓
	NF3	Flood	Suspended Solid (SS)			4.17	5.00	3.40	6.00	3.68	Limit Level	N	N		/			✓	✓	✓
06/3/2025	WSR37	Flood	Suspended Solid (SS)			4.00	5.00	3.90	6.00	4.23	Action Level	N	N		/	✓	✓	✓	✓	✓
00/3/2023	NF3	Flood	Suspended Solid (SS)			4.58	5.00	3.90	6.00	4.23	Limit Level	N	N		/	✓	✓	✓	✓	✓
13/3/2025	WSR1	Ebb	Suspended Solid (SS)			3.25	5.00	3.20	6.00	3.47	Action Level	N	N		/		✓	✓	✓	✓
15/2/2025	WSR1	Ebb	Suspended Solid (SS)			3.67	5.00	3.50	6.00	3.79	Action Level	N	N		/	✓	✓	✓	✓	✓
15/2/2025	WSR36	Ebb	Suspended Solid (SS)			3.50	5.00	3.50	6.00	3.79	Action Level	N	N		/	✓	✓	✓	✓	✓

- 1) Control station value already exceed either the Action or Limit Level.
- 2) No silt plume or pollution discharge from site area was observed.
- 3) Rainfall was recorded at Tseung Kwan O during the monitoring period, rainfall may lead to release of SS content form the soil of the nearby lands (e.g., Country Park, fill bank).
- 4) No action and limit level exceedance observed at WSR37 (Outfall Shaft).
- 5) Marine construction activity was completed.
- 6) No operation activities related to the release of SS in the reporting period.
- 7) No exceedances of SS at S.P.1 in the daily continuous effluent monitoring.

Conclusion:

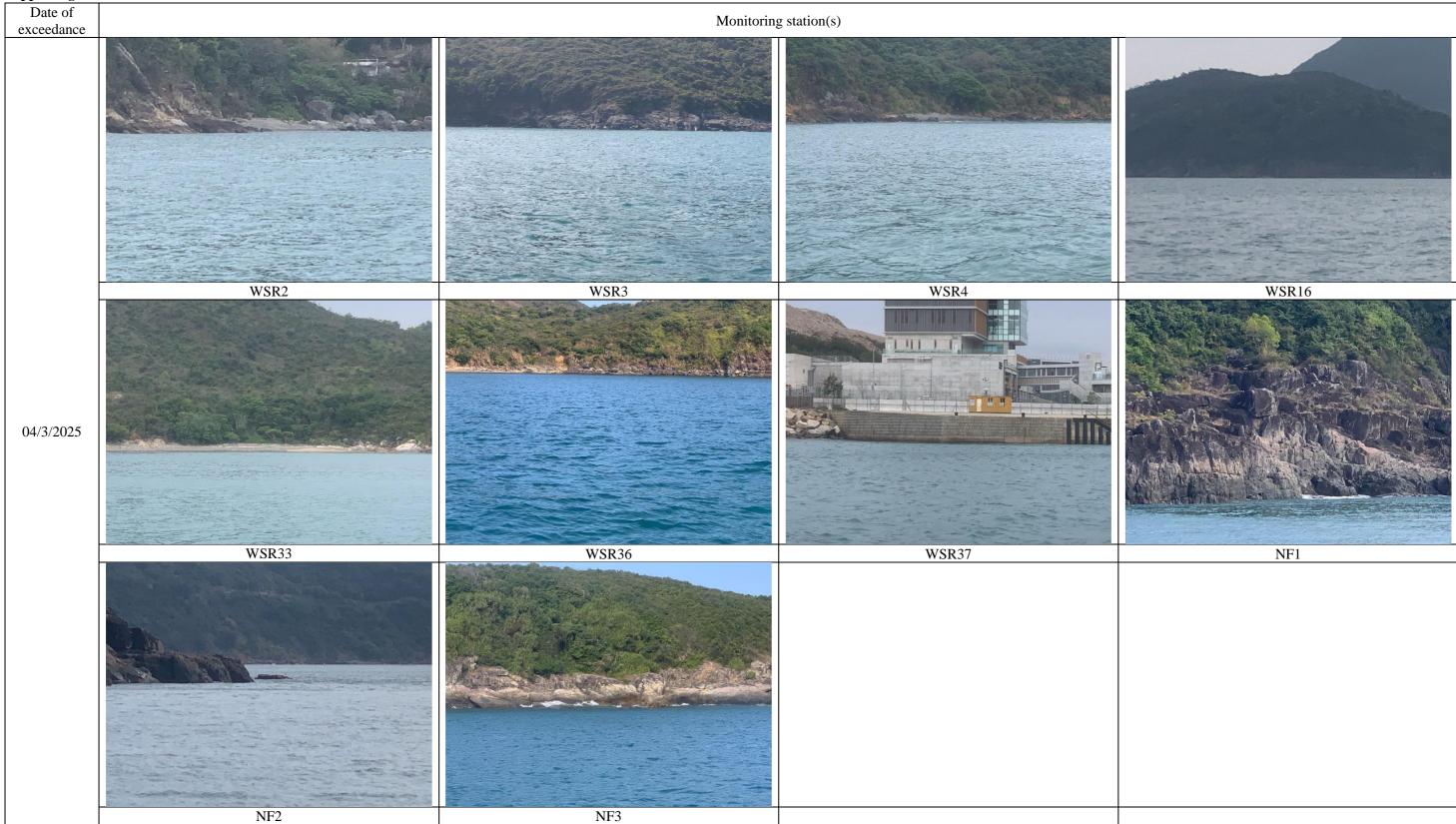
During water quality monitoring on 1, 4, 6, 8, 11, 13 and 15 March 2025, four (4) Action Level and eight (8) Limit Level exceedances were recorded during mid-flood tide and three (3) Action Level exceedances were recorded during mid-ebb. Total eight (7) Action Level and eight (8) Limit Level exceedances for SS of impact water quality monitoring were recorded between 1 March to 15 March 2025.

The marine construction works were completed on 1 September 2023. The commissioning activities were shown in the table below.

The desalination plant and the outfall shaft work normally.

After investigation, all exceedances were considered non-project related.

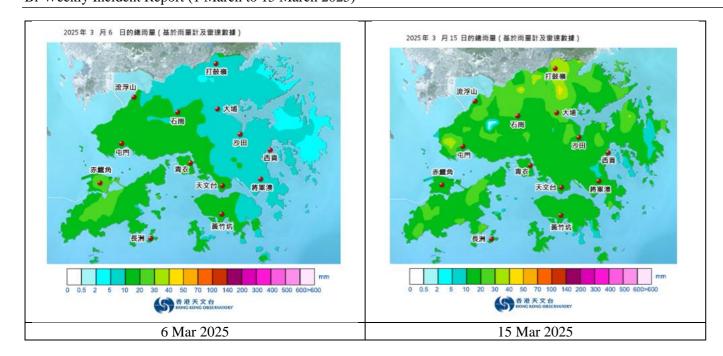
Contract No. 13/WSD/17
Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant
Bi-Weekly Incident Report (1 March to 15 March 2025)



Operation Activities:

4 March 2025	6 March 2025						
 Production of desalinated water Water sampling and analysis 	 Production of desalinated water Water sampling and analysis 						
13 March 2025	15 March 2025						
The plant stopped operation	The plant stopped operation						

Supporting Photo:



Date of exceedance	Monitoring station(s)									
06/3/2025	THE MAN AND AND AND AND AND AND AND AND AND A									
	WSR37	NF3								
13/3/2025	WSR1									
15/3/2025	WSR1	WSR36								

Bi-Weekly Incident Report on Action Level or Limit Level Non-Compliance

Date of	Monitoring	Tide	Parameter	Measurement Result	Sampling	Depth Average Result	Action Level (mg/L)		Limit Level (mg/L)		Exceedance	Marine construction activities with	Exceedance related to	Reasons of non-project related exceedance						
exceedance	Station			(mg/L)	depth	(mg/L)	95%- ile	Control 120%			contact with water (Y/N)	Project (Y/N)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	WSR1	Flood	Suspended Solid (SS)			3.25	5.00	3.20	6.00	3.47	Action Level	N	N		✓		✓	✓	✓	✓
	WSR2	Flood	Suspended Solid (SS)			4.08	5.00	3.20	6.00	3.47	Limit Level	N	N		√		√	√	√	✓
22/3/2025	NF1	Flood	Suspended Solid (SS)			11.00	5.00	3.20	6.00	3.47	Limit Level	N	N		√		√	√	✓	√
	NF2	Flood	Suspended Solid (SS)			12.17	5.00	3.20	6.00	3.47	Limit Level	N	N		√		√	√	✓	√
	NF3	Flood	Suspended Solid (SS)			12.00	5.00	3.20	6.00	3.47	Limit Level	N	N		√		√	√	√	✓
27/3/2025	WSR4	Ebb	Suspended Solid (SS)			3.33	5.00	3.20	6.00	3.47	Action Level	N	N		✓		√	✓	✓	✓
21/3/2023	WSR16	Ebb	Suspended Solid (SS)			4.58	5.00	3.20	6.00	3.47	Limit Level	N	N		✓		✓	✓	✓	✓

- Control station value already exceed either the Action or Limit Level.
- 2) No silt plume or pollution discharge from site area was observed.
- 3) Rainfall was recorded at Tseung Kwan O during the monitoring period, rainfall may lead to release of SS content form the soil of the nearby lands (e.g., Country Park, fill bank).
- 4) No action and limit level exceedance observed at WSR37 (Outfall Shaft).
- 5) Marine construction activity was completed.
- 6) No operation activities related to the release of SS in the reporting period.
- 7) No exceedances of SS at S.P.1 in the daily continuous effluent monitoring.

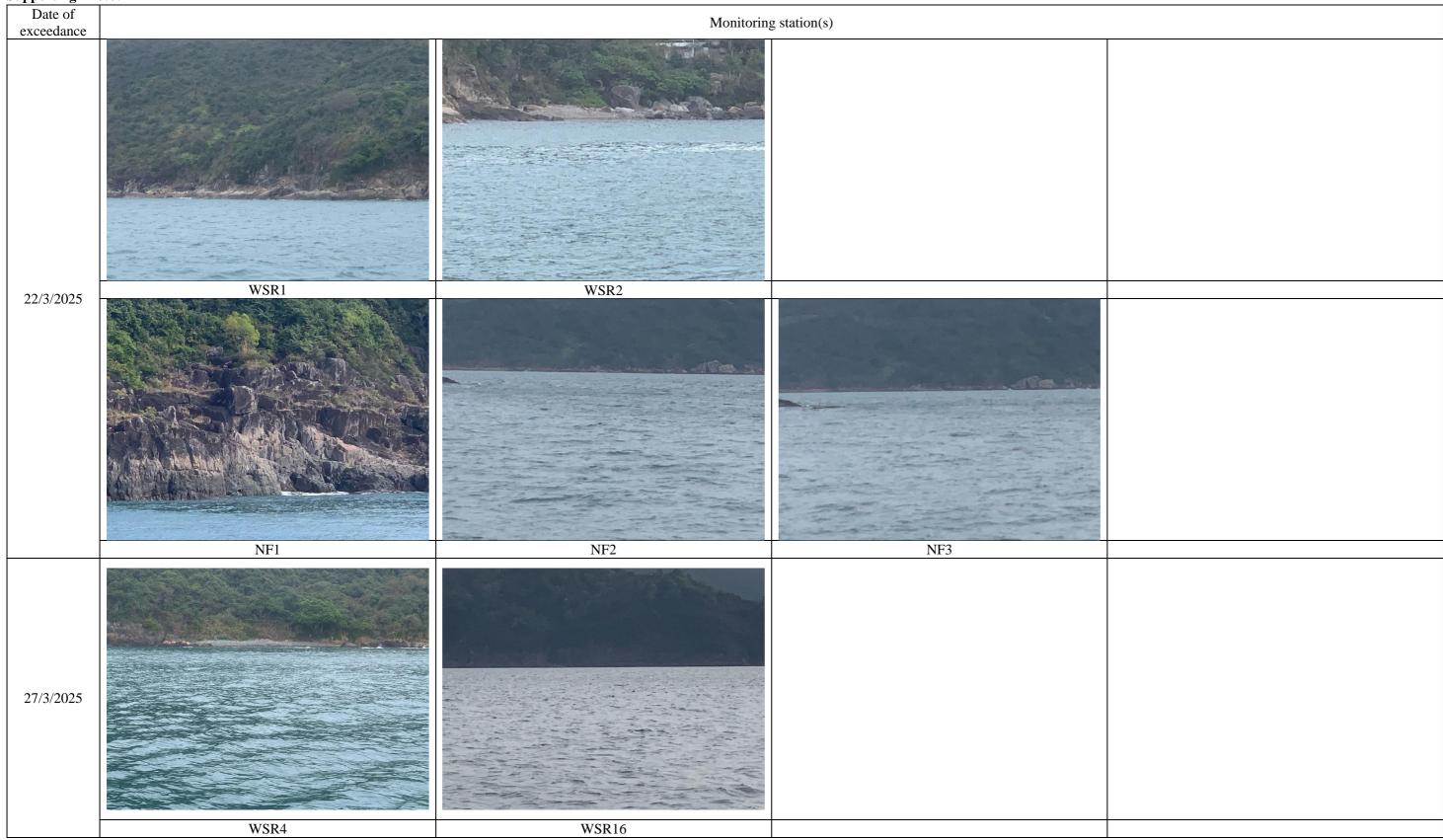
Conclusion:

During water quality monitoring on 18, 20, 22, 25, 27 and 29 March 2025, one (1) Action Level and four (4) Limit Level exceedances were recorded during mid-flood tide, one (1) Action Level and one (1) Limit Level exceedances were recorded during mid-ebb. Total two (2) Action Level and five (5) Limit Level exceedances for SS of impact water quality monitoring were recorded between 16 March to 31 March 2025.

The marine construction works were completed on 1 September 2023. The commissioning activities were shown in the table below.

The desalination plant and the outfall shaft work normally.

After investigation, all exceedances were considered non-project related.


Operation Activities:

22 March 2025	27 March 2025						
 Production of desalinated water Water sampling and analysis 	 Production of desalinated water Water sampling and analysis 						

Supporting Photo:

